Journal of Structural Chemistry

, Volume 52, Issue 2, pp 330–339

Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method

  • E. Kraleva
  • M. L. Saladino
  • R. Matassa
  • E. Caponetti
  • S. Enzo
  • A. Spojakina
Article

Abstract

Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.

Keywords

TiO2-ZrO2 mixed oxides sol-gel method srilankite Rietveld method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Hernandez-Alonso, I. Tejedor-Tejedor, J. M. Coronado, et al., Thin Solid Film, 50, 2125–2131 (2006).Google Scholar
  2. 2.
    J. Aguado, R. van Grieken, M.-J. Lopez-Munoz, and J. Marugan, Appl. Catal. A: Gen., 312, 202–212 (2006).CrossRefGoogle Scholar
  3. 3.
    J. Luka, M. Klementova, P. Bezdicka, et al., Appl. Catal. B: Environ., 74, 83–91 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. M. Wang, S. W. Liu, M. K. Lu, et al., J. Mol. Catal. A: Chem., 215, 137–142 (2004).CrossRefGoogle Scholar
  5. 5.
    I. Djerdj, D. Arcon, Z. Jaglicic, and M. Niederberger, J. Solid State Chem., 181, 1571–1581 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Anandan and M. Yoon, J. Photochem. Photobiol. C: Photochem., 4, 5–18 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Jitianu, T. Cacciaguerra, R. Benoit, et al., Carbon, 42, 1147–1151 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Torimoto, Y. Okawa, N. Takeda, et al., Photobiol. A: Photochem., 103, 153–157 (1997).CrossRefGoogle Scholar
  9. 9.
    X. Z. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, Environ. Sci. Technol., 30, 647–653 (1996).CrossRefGoogle Scholar
  10. 10.
    G. Colon, M. C. Hidalgo, and J. A. Navıo, Appl. Catal. A: Gen., 231, 185–199 (2002).CrossRefGoogle Scholar
  11. 11.
    J. H. Schattka, D. G. Shchukin, J. Jia, et al., Chem. Mater., 14, 5103–5108 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Hirano, C. Nakahara, K. Ota, et al., J. Solid State Chem., 170, 39–47 (2003).CrossRefGoogle Scholar
  13. 13.
    T. Isobe, S. Komatsubara, and M. Senna, Nippon Kagaku Kaishi, 1361 (1991).Google Scholar
  14. 14.
    T. Isobe, S. Komatsubara, and M. Senna, J. Non-Cryst. Solids, 150, 144–147 (1992).CrossRefGoogle Scholar
  15. 15.
    T. M. Twesme, D. T. Tompkins, M. A. Anderson, and Th. W. Root, Appl. Catal. B: Enveronmental., 64, 153–160 (2006).CrossRefGoogle Scholar
  16. 16.
    J. K. Youl and P. S. Bin, Korean Journal of Chemical Engineering, 18, No. 6, 879–888 (2001).CrossRefGoogle Scholar
  17. 17.
    R. A. Young (ed.), in: The Rietveld Method, University Press, Oxford (1993).Google Scholar
  18. 18.
    L. Lutterotti and S. Gialanella, Acta Mater., 46, 101–110 (1998).CrossRefGoogle Scholar
  19. 19.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309–315 (1938).CrossRefGoogle Scholar
  20. 20.
    Yashima and Tsunekawa, Acta Cryst. B, 62, 161–164 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Willgallis and H. Hartl, Zeitschr Kristallogr, Crystal Research, Technology, 24, No. 3, 263–268 (1989).Google Scholar
  22. 22.
    L. Sham Edgardo, A. G. Aranda Miguel, Farfan-Torres E. Mynica, et al., J. Solid State Chem., 139, 225–232 (1998).CrossRefGoogle Scholar
  23. 23.
    Kyeong Youl Jung and Seung Bin Park, Materials Lett., 58, 2897–2900 (2004).CrossRefGoogle Scholar
  24. 24.
    I. R. Beattie and T. R. Gilson, J. Chem. Soc. A, 2322–2329 (1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. Kraleva
    • 1
  • M. L. Saladino
    • 2
  • R. Matassa
    • 3
  • E. Caponetti
    • 2
    • 3
  • S. Enzo
    • 4
  • A. Spojakina
    • 1
  1. 1.Institute of CatalysisBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Dipartimento di Chimica “S. Cannizzaro,”Università di Palermo and INSTM-Udr PalermoPalermoItaly
  3. 3.Centro Grandi Apparecchiature-UniNetLabUniversità di PalermoPalermoItaly
  4. 4.Dipartimento di ChimicaUniversità di Sassari and INSTM-Udr SassariSassariItaly

Personalised recommendations