Skip to main content

A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given curve

Astract

A model is introduced for the conductivity of carbon-nanotube polymer composites based upon percolation theory and fractals. These types of polymer composites have been developed in the recent years, and experimental data on their percolation threshold is available. We constructed a fractal space with the aim of the generalized Mandelbrot-Given curve and used the experimental critical exponent of conductivity to calculate the parameters of such a curve. Finally, the moments of the current distribution function are estimated, and the effect of the critical exponent on this function is investigated.

This is a preview of subscription content, access via your institution.

References

  1. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. W. A. Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995).

    Article  Google Scholar 

  3. Q. H. Wang, Appl. Phys. Lett., 72, 2912 (1998).

    Article  CAS  Google Scholar 

  4. A. G. Rinzler, Science, 269, 1550 (1995).

    Article  CAS  Google Scholar 

  5. K. Anazawa, K. Shimotani, C. Manabe, et al., Appl. Phys. Lett., 81, 739–741 (2002).

    Article  CAS  Google Scholar 

  6. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215502 (2001).

    Article  CAS  Google Scholar 

  7. E. T. Thostenson, Z. F. Ren, and T. W. Chou, Compos. Sci. Technol., 61, 1899–1912 (2001).

    Article  CAS  Google Scholar 

  8. T. Lau and D. Hui, Composites Part B. Engineering, 33, 263–277 (2002).

    Article  Google Scholar 

  9. W. Bauhofer and J. Z. Kovacs, Compos. Sci. Technol., 69, No. 10, 1486–1498 (2009).

    Article  CAS  Google Scholar 

  10. D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor&Francis, London (1994).

    Google Scholar 

  11. S. R. Broadbent and J. M. Hammersley, Percolation Processes, I, II, Proc. Cambridge Philos. Soc., 53, 629–645 (1957).

    CAS  Google Scholar 

  12. P. R. King, S. V. Buldyrev, N. V. Dokholyan, et al., Percolation Theory. http://www.lps.org.uk/dialogweb/current_articles/king_percolation_theory/precolation_th... 10/11/2002.

  13. M. Sahimi, Application of Percolation Theory, Taylor&Francis (1994).

  14. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).

    Google Scholar 

  15. B. B. Mandelbrot and J. A. Given, Phys. Rev. Lett., 52, 1853 (1984).

    Article  Google Scholar 

  16. M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Adv. Mater., 17, No. 9, 1186–1191 (2005).

    Article  CAS  Google Scholar 

  17. S. M. Yuen, C. C. M. Ma, H. H. Wu, et al., J. Appl. Polym. Sci., 103, No. 2, 1272–1278 (2007).

    Article  CAS  Google Scholar 

  18. A. P. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Appl. Phys. Lett., 89, No. 13, 133102, 1–3 (2006).

    Article  Google Scholar 

  19. G. B. Blanchet, C. R. Fincher, and F. Gao, Appl. Phys. Lett., 82, No. 8, 1290–1292 (2003).

    Article  CAS  Google Scholar 

  20. K. Yoshino, H. Kajii, H. Araki, et al., Full. Sci. Technol., 7, No. 4, 695–711 (1999).

    CAS  Google Scholar 

  21. R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett., 83, No. 14, 2928–2930 (2003).

    Article  CAS  Google Scholar 

  22. A. Mierczynska, M. Mayne-L’Hermite, and G. Boiteux, J. Appl. Polym. Sci., 105, No. 1, 158–168 (2007).

    Article  CAS  Google Scholar 

  23. H. M. Kim, M. S. Choi, J. Joo, et al., Phys. Rev. B, 74, No. 5, 54202, 1–7 (2006).

    Article  Google Scholar 

  24. H. Koerner, W. D. Liu, M. Alexander, et al., Polymer, 46, No. 12, 4405–4420 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Baheri.

Additional information

Original Russian Text Copyright © 2011 by M. Monajjemi, H. Baheri, and F. Mollaamin

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 1, pp. 60–64, January–February, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monajjemi, M., Baheri, H. & Mollaamin, F. A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given curve. J Struct Chem 52, 54–59 (2011). https://doi.org/10.1134/S0022476611010070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476611010070

Keywords

  • percolation theory
  • fractal
  • Mandelbrot-Given curve
  • carbon nanotube composites