Astract
A model is introduced for the conductivity of carbon-nanotube polymer composites based upon percolation theory and fractals. These types of polymer composites have been developed in the recent years, and experimental data on their percolation threshold is available. We constructed a fractal space with the aim of the generalized Mandelbrot-Given curve and used the experimental critical exponent of conductivity to calculate the parameters of such a curve. Finally, the moments of the current distribution function are estimated, and the effect of the critical exponent on this function is investigated.
This is a preview of subscription content, access via your institution.
References
S. Iijima, Nature, 354, 56 (1991).
W. A. Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995).
Q. H. Wang, Appl. Phys. Lett., 72, 2912 (1998).
A. G. Rinzler, Science, 269, 1550 (1995).
K. Anazawa, K. Shimotani, C. Manabe, et al., Appl. Phys. Lett., 81, 739–741 (2002).
P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215502 (2001).
E. T. Thostenson, Z. F. Ren, and T. W. Chou, Compos. Sci. Technol., 61, 1899–1912 (2001).
T. Lau and D. Hui, Composites Part B. Engineering, 33, 263–277 (2002).
W. Bauhofer and J. Z. Kovacs, Compos. Sci. Technol., 69, No. 10, 1486–1498 (2009).
D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor&Francis, London (1994).
S. R. Broadbent and J. M. Hammersley, Percolation Processes, I, II, Proc. Cambridge Philos. Soc., 53, 629–645 (1957).
P. R. King, S. V. Buldyrev, N. V. Dokholyan, et al., Percolation Theory. http://www.lps.org.uk/dialogweb/current_articles/king_percolation_theory/precolation_th... 10/11/2002.
M. Sahimi, Application of Percolation Theory, Taylor&Francis (1994).
B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).
B. B. Mandelbrot and J. A. Given, Phys. Rev. Lett., 52, 1853 (1984).
M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Adv. Mater., 17, No. 9, 1186–1191 (2005).
S. M. Yuen, C. C. M. Ma, H. H. Wu, et al., J. Appl. Polym. Sci., 103, No. 2, 1272–1278 (2007).
A. P. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Appl. Phys. Lett., 89, No. 13, 133102, 1–3 (2006).
G. B. Blanchet, C. R. Fincher, and F. Gao, Appl. Phys. Lett., 82, No. 8, 1290–1292 (2003).
K. Yoshino, H. Kajii, H. Araki, et al., Full. Sci. Technol., 7, No. 4, 695–711 (1999).
R. Ramasubramaniam, J. Chen, and H. Liu, Appl. Phys. Lett., 83, No. 14, 2928–2930 (2003).
A. Mierczynska, M. Mayne-L’Hermite, and G. Boiteux, J. Appl. Polym. Sci., 105, No. 1, 158–168 (2007).
H. M. Kim, M. S. Choi, J. Joo, et al., Phys. Rev. B, 74, No. 5, 54202, 1–7 (2006).
H. Koerner, W. D. Liu, M. Alexander, et al., Polymer, 46, No. 12, 4405–4420 (2005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text Copyright © 2011 by M. Monajjemi, H. Baheri, and F. Mollaamin
The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 52, No. 1, pp. 60–64, January–February, 2011.
Rights and permissions
About this article
Cite this article
Monajjemi, M., Baheri, H. & Mollaamin, F. A percolation model for carbon nanotube-polymer composites using the Mandelbrot-Given curve. J Struct Chem 52, 54–59 (2011). https://doi.org/10.1134/S0022476611010070
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0022476611010070
Keywords
- percolation theory
- fractal
- Mandelbrot-Given curve
- carbon nanotube composites