Skip to main content
Log in

Effect of Long-Term Social Isolation on Behavior and Brain Dopaminergic System in Mice

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The central dopaminergic system is implicated in the regulation of various physiological processes and behavioral responses, including social behavior. Although long-term individual housing of rodents is well known to alter their behavioral and neurochemical parameters, data interpretation remains ambiguous. In this work, we studied the effects of long-term social isolation on the behavior and state of the central dopaminergic system in male C57Bl/6 mice. The animals of the experimental group, aged 40–42 days, were housed singly in individual cages for six weeks, while the age-matched mice of the control group were housed in a group. Isolation did not affect locomotor and exploratory activity in the open field test compared to group housing. At the same time, singly-housed animals demonstrated a longer duration of social contacts in a resident–intruder model, as well as a weakened stereotypical behavior in the marble burying test compared to group-housed rats. These behavioral changes were accompanied by an increase in striatal mRNA levels of the genes encoding dopamine D1 and D2 receptors. Moreover, the level of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) decreased in the hypothalamus and increased in the frontal cortex in singly-housed compared to group-housed mice. The results provide a better insight into the effects of long-term social isolation on the behavior and dopaminergic system in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Arakawa H (2018) Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behav Brain Res 341: 98–108.https://doi.org/10.1016/j.bbr.2017.12.022

    Article  PubMed  Google Scholar 

  2. Brandt L, Liu S, Heim C, Heinz A (2022) The effects of social isolation stress and discrimination on mental health. Translational Psychiatry 12: 398.https://doi.org/10.1038/s41398-022-02178-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakama N, Usui N, Doi M, Shimada S (2023) Early life stress impairs brain and mental development during childhood increasing the risk of developing psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 126: 110783.https://doi.org/10.1016/j.pnpbp.2023.110783

    Article  PubMed  Google Scholar 

  4. Kaneda Y, Kawata A, Suzuki K, Matsunaga D, Yasumatsu M, Ishiwata T (2021) Comparison of neurotransmitter levels, physiological conditions, and emotional behavior between isolation-housed rats with group-housed rats. Dev Psychobiol 63: 452–460.https://doi.org/10.1002/dev.22036

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, Cai W, Li L, Guo Q, Li Y, Lv Z, Jia R, Tai F, He Z (2021) Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res 1765: 147497.https://doi.org/10.1016/j.brainres.2021.147497

    Article  CAS  PubMed  Google Scholar 

  6. Grigoryan GA, Pavlova IV, Zaichenko MI (2022) Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. Neurosci Behav Physiol 52: 722–738.https://doi.org/10.1007/s11055-022-01297-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukkes JL, Mokin MV, Scholl JL, Forster GL (2009) Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav 55: 248–256.https://doi.org/10.1016/j.yhbeh.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  8. Wang HT, Huang FL, Hu ZL, Zhang WJ, Qiao XQ, Huang YQ, Dai RP, Li F, Li CQ (2017) Early-Life Social Isolation-Induced Depressive-Like Behavior in Rats Results in Microglial Activation and Neuronal Histone Methylation that Are Mitigated by Minocycline. Neurotox Res 31: 505–520.https://doi.org/10.1007/s12640-016-9696-3

    Article  CAS  PubMed  Google Scholar 

  9. Koike H, Ibi D, Mizoguchi H, Nagai T, Nitta A, Takuma K, Nabeshima T, Yoneda Y, Yamada K (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202: 114–121.https://doi.org/10.1016/j.bbr.2009.03.028

    Article  CAS  PubMed  Google Scholar 

  10. Kercmar J, Büdefeld T, Grgurevic N, Tobet SA, Majdic G (2011) Adolescent social isolation changes social recognition in adult mice. Behav Brain Res 216: 647–651.https://doi.org/10.1016/j.bbr.2010.09.007

    Article  PubMed  Google Scholar 

  11. Dankoski EC, Agster KL, Fox ME, Moy SS, Wightman RM (2014) Facilitation of serotonin signaling by SSRIs is attenuated by social isolation. Neuropsychopharmacology 39: 2928–2937.https://doi.org/10.1038/npp.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinley BL, Kyne RF, Lawton-Stone TS, Walker DM, Paul MJ (2021) Long-term consequences of peri-adolescent social isolation on social preference, anxiety-like behaviour, and vasopressin neural circuitry of male and female rats. Eur J Neurosci 54: 7790–7804.https://doi.org/10.1111/ejn.15520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perić I, Stanisavljević A, Gass P, Filipović D (2021) Fluoxetine exerts subregion/layer specific effects on parvalbumin/GAD67 protein expression in the dorsal hippocampus of male rats showing social isolation-induced depressive-like behaviour. Brain Res Bull 173: 174–183.https://doi.org/10.1016/j.brainresbull.2021

    Article  PubMed  Google Scholar 

  14. Baskerville TA, Douglas AJ (2010) Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther 16: e92–e123.https://doi.org/10.1111/j.1755-5949.2010.00154.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors—IUPHAR Review 13. Br J Pharmacol 172: 1–23.https://doi.org/10.1111/bph.12906

    Article  CAS  PubMed  Google Scholar 

  16. Villalba RM, Smith Y (2013) Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience 251: 2–20.https://doi.org/10.1016/j.neuroscience.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  17. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17: 524–532.https://doi.org/10.1038/nrn.2016.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Correia R, Coimbra B, Domingues AV, Wezik M, Vieitas-Gaspar N, Gaspar R, Sousa N, Pinto L, Rodrigues AJ, Soares-Cunha C (2023) Involvement of nucleus accumbens D2-medium spiny neurons projecting to the ventral pallidum in anxiety-like behaviour. J Psychiatry Neurosci 48: E267–E284.https://doi.org/10.1503/jpn.220111

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han X, Wang W, Shao F, Li N (2011) Isolation rearing alters social behaviors and monoamine neurotransmission in the medial prefrontal cortex and nucleus accumbens of adult rats. Brain Res 1385: 175–181.https://doi.org/10.1016/j.brainres.2011.02.035

    Article  CAS  PubMed  Google Scholar 

  20. Trabace L, Zotti M, Colaianna M, Morgese MG, Schiavone S, Tucci P, Harvey BH, Wegener G, Cuomo V (2012) Neurochemical differences in two rat strains exposed to social isolation rearing. Acta Neuropsychiatr 24: 286–295.https://doi.org/10.1111/j.1601-5215.2011.00627.x

    Article  PubMed  Google Scholar 

  21. Brenes JC, Fornaguera J (2009) The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res 198: 199–205.https://doi.org/10.1016/j.bbr.2008.10.036

    Article  CAS  PubMed  Google Scholar 

  22. Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 12: 129–162.https://doi.org/10.1615/critrevneurobiol.v12.i1-2.50

    Article  CAS  PubMed  Google Scholar 

  23. Bean G, Lee T (1991) Social isolation and cohabitation with haloperidol-treated partners: effect on density of striatal dopamine D2 receptors in the developing rat brain. Psychiatry Res 36: 307–317.https://doi.org/10.1016/0165-1781(91)90029-o

    Article  CAS  PubMed  Google Scholar 

  24. Fitzgerald ML, Mackie K, Pickel VM (2013) The impact of adolescent social isolation on dopamine D2 and cannabinoid CB1 receptors in the adult rat prefrontal cortex. Neuroscience 235: 40–50.https://doi.org/10.1016/j.neuroscience.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  25. King MV, Seeman P, Marsden CA, Fone KCF (2009). Increased dopamine D2Highreceptors in rats reared in social isolation. Synapse 63: 476–483.https://doi.org/10.1002/syn.20624

    Article  CAS  PubMed  Google Scholar 

  26. Archer J (1969) Contrasting effects of group housing and isolation on subsequent open field exploration in laboratory rats. Psychon Sci 14: 234–235.https://doi.org/10.3758/BF03332812

    Article  Google Scholar 

  27. Naumenko EV, Popova NK, Starygin AG (1971) Pituitary-adrenal system of animals in groups and isolation. J General Biol 32: 731–736. (In Russ).

    CAS  Google Scholar 

  28. Kulikov AV, Tikhonova MA, Kulikov VA (2008) Automated measurement of spatial preference in the open field test with transmitted lighting. J Neurosci Methods 170: 345–351.https://doi.org/10.1016/j.jneumeth.2008.01.024

    Article  PubMed  Google Scholar 

  29. Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols 1: 122–124.https://doi.org/ 10/1038/nprot.2006.20

    Article  CAS  PubMed  Google Scholar 

  30. Kulikova EA, Bazovkina DV, Antonov YV, Akulov AE, Kulikov AV, Kondaurova EM (2017) Alteration of the brain morphology and the response to the acute stress in the recombinant mouse lines with different predisposition to catalepsy. Neurosci Res 117: 14–21.https://doi.org/10.1016/j.neures.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  31. Bazovkina D, Naumenko V, Bazhenova E, Kondaurova E (2021) Effect of Central Administration of Brain-Derived Neurotrophic Factor (BDNF) on Behavior and Brain Monoamine Metabolism in New Recombinant Mouse Lines Differing by 5-HT1A Receptor Functionality. Int J Mol Sci 22: 11987.https://doi.org/10.3390/ijms222111987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naumenko VS, Kulikov AV (2006) Quantitative assay of 5-HT(1A) serotonin receptor gene expression in the brain. Mol Biol (Mosk) 40: 37–44.https://doi.org/10.1134/s0026893306010079

  33. Naumenko VS, Osipova DV, Kostina EV, Kulikov AV (2008) Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J Neurosci Methods 170: 197–203.https://doi.org/10.1016/j.jneumeth.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  34. Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, Egeland M, Hye A, Zunszain PA, Thuret S, Pariante CM, Fernandes C (2020) The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl Psychiatry 10: 325.https://doi.org/10.1038/s41398-020-01000-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lander SS, Linder-Shacham D, Gaisler-Salomon I (2017) Differential effects of social isolation in adolescent and adult mice on behavior and cortical gene expression. Behav Brain Res 316: 245–254.https://doi.org/10.1016/j.bbr.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Locci A, Geoffroy P, Miesch M, Mensah-Nyagan AG, Pinna G (2017) Social Isolation in Early versus Late Adolescent Mice Is Associated with Persistent Behavioral Deficits That Can Be Improved by Neurosteroid-Based Treatment. Front Cell Neurosci 11: 208.https://doi.org/10.3389/fncel.2017.00208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu N, Wang Y, An AY, Banker C, Qian YH, O’Donnell JM (2020) Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur J Neurosci 52: 2694–2704.https://doi.org/10.1111/ejn.14565

    Article  PubMed  Google Scholar 

  38. Oliver DK, Intson K, Sargin D, Power SK, McNabb J, Ramsey AJ, Lambe EK (2020) Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour. Neuropharmacology 168: 108015.https://doi.org/10.1016/j.neuropharm.2020.108015

    Article  CAS  PubMed  Google Scholar 

  39. Amiri S, Haj-Mirzaian A, Rahimi-Balaei M, Razmi A, Kordjazy N, Shirzadian A, Ejtemaei Mehr S, Sianati H, Dehpour AR (2015) Co-occurrence of anxiety and depressive-like behaviors following adolescent social isolation in male mice; possible role of nitrergic system. Physiol Behav 145: 38–44.https://doi.org/10.1016/j.physbeh.2015.03.032

    Article  CAS  PubMed  Google Scholar 

  40. Võikar V, Polus A, Vasar E, Rauvala H (2005) Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences. Genes Brain Behav 4: 240–252.https://doi.org/10.1111/j.1601-183X.2004.00106.x

    Article  PubMed  Google Scholar 

  41. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol Biol 1916: 99–103.https://doi.org/10.1007/978-1-4939-8994-2_9

    Article  CAS  PubMed  Google Scholar 

  42. Dixit PV, Sahu R, Mishra DK (2020) Marble-burying behavior test as a murine model of compulsive-like behavior. J Pharmacol Toxicol Methods 102: 106676.https://doi.org/10.1016/j.vascn.2020.106676

    Article  CAS  PubMed  Google Scholar 

  43. Himanshu, Dharmila, Sarkar D, Nutan (2020) A Review of Behavioral Tests to Evaluate Different Types of Anxiety and Anti-anxiety Effects. Clin Psychopharmacol Neurosci 18: 341–351.https://doi.org/10.9758/cpn.2020.18.3.341

  44. Zlatković J, Todorović N, Bošković M, Pajović SB, Demajo M, Filipović D (2014) Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Mol Cell Biochem 393: 43–57.https://doi.org/10.1007/s11010-014-2045-z

    Article  CAS  PubMed  Google Scholar 

  45. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 204: 361–373.https://doi.org/10.1007/s00213-009-1466-y

  46. Tulogdi A, Tóth M, Barsvári B, Biró L, Mikics E, Haller J (2014) Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats. Dev Psychobiol 56: 49–57.https://doi.org/10.1002/dev.21090

    Article  PubMed  Google Scholar 

  47. Biro L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, Sandi C, Haller J (2017) Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct 222: 1861–1875.https://doi.org/10.1007/s00429-016-1312-z

    Article  PubMed  Google Scholar 

  48. Ma YK, Zeng PY, Chu YH, Lee CL, Cheng CC, Chen CH, Su YS, Lin KT, Kuo TH (2022) Lack of social touch alters anxiety-like and social behaviors in male mice. Stress 25: 134–144.https://doi.org/10.1080/10253890.2022.2047174

    Article  PubMed  Google Scholar 

  49. Weele CMV, Siciliano CA, Tye KM (2019) Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 1713: 16–31.https://doi.org/10.1016/j.brainres.2018.11.044

    Article  CAS  PubMed  Google Scholar 

  50. Shirenova SD, Khlebnikova NN, Narkevich VB, Kudrin VS, Krupina NA (2023) Nine-month-long Social Isolation Changes the Levels of Monoamines in the Brain Structures of Rats: A Comparative Study of Neurochemistry and Behavior. Neurochem Res 48: 1755–1774.https://doi.org/10.1007/s11064-023-03858-3

    Article  CAS  PubMed  Google Scholar 

  51. Ko C-Y, Liu Y-P (2016) Disruptions of sensorimotor gating, cytokines, glycemia, monoamines, and genes in both sexes of rats reared in social isolation can be ameliorated by oral chronic quetiapine administration. Brain Behav Immun 51: 119–130.https://doi.org/10.1016/j.bbi.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  52. Mncube K, Möller M, Harvey BH (2021) Post-weaning social isolated flinders sensitive line rats display bio-behavioural manifestations resistant to fluoxetine: a model of treatment-resistant depression. Front Psychiatry 12: 688150.https://doi.org/10.3389/fpsyt.2021.688150fpsyt.2021.688150

    Article  PubMed  PubMed Central  Google Scholar 

  53. Algamal M, Pearson AJ, Hahn-Townsend C, Burca I, Mullan M, Crawford F, Ojo JO (2021) Repeated unpredictable stress and social isolation induce chronic HPA axis dysfunction and persistent abnormal fear memory. Prog Neuropsychopharmacol Biol Psychiatry 104: 110035.https://doi.org/10.1016/j.pnpbp.2020.110035

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe T, Iba H, Moriyama H, Kubota K, Katsurabayashi S, Iwasaki K (2021) Sansoninto attenuates aggressive behavior and increases levels of homovanillic acid, a dopamine metabolite, in social isolation-reared mice. J Tradit Complement Med 12: 243–249.https://doi.org/10.1016/j.jtcme.2021.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yun S, Yang B, Anair JD, Martin MM, Fleps SW, Pamukcu A, Yeh NH, Contractor A, Kennedy A, Parker JG (2023) Antipsychotic drug efficacy correlates with the modulation of D1 rather than D2 receptor-expressing striatal projection neurons. Nat Neurosci 26: 1417–1428.https://doi.org/10.1038/s41593-023-01390-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bruins Slot LA, Bardin L, Auclair AL, Depoortere R, Newman-Tancredi A (2008) Effects of antipsychotics and reference monoaminergic ligands on marble burying behavior in mice. Behav Pharmacol 19: 145–152.https://doi.org/10.1097/FBP.0b013e3282f62cb2

    Article  CAS  PubMed  Google Scholar 

  57. Egashira N, Kubota N, Goto Y, Watanabe T, Kubota K, Katsurabayashi S, Iwasaki K (2018) The antipsychotic trifluoperazine reduces marble-burying behavior in mice via D2 and 5-HT2A receptors: Implications for obsessive-compulsive disorder. Pharmacol Biochem Behav 165: 9–13.https://doi.org/10.1016/j.pbb.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  58. Del Arco A, Zhu S, Terasmaa A, Mohammed AH, Fuxe K (2004) Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology (Berl) 171: 148–155.https://doi.org/10.1007/s00213-003-1578-8

  59. Yorgason JT, Calipari ES, Ferris MJ, Karkhanis AN, Fordahl SC, Weiner JL, Jones SR (2016) Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology 101: 471–479.https://doi.org/10.1016/j.neuropharm.2015.10.025

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant No. 21-15-00051). The maintenance of mouse strains was state budget-funded (project FWNR-2022-0023). No additional grants were received to conduct or supervise this particular research.

Author information

Authors and Affiliations

Authors

Contributions

D.V.B., E.A.K.—conceptualization and general supervision; D.V.B., S.N.A., U.S.U., P.D.K., A.B.A.—data collection; D.V.B., S.N.A., U.S.U.—data processing; D.V.B., E.A.K.—writing and editing the manuscript.

Corresponding author

Correspondence to D. V. Bazovkina.

Ethics declarations

ETHICS APPROVAL

All animal-related procedures were performed in compliance with the the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm) and the order of the Ministry of Health of the Russian Federation No. 119n dated 01.04.2016 On Approval of the Rules of Good Laboratory Practice (registered on 15.08.2016, No. 43232). Every effort was made to minimize the number of experimental animals and their suffering. The design of the experiment was approved by the Bioethics Committee of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (Minutes No. 101 dated 10.11.2021).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazovkina, D.V., Ustinova, U.S., Adonina, S.N. et al. Effect of Long-Term Social Isolation on Behavior and Brain Dopaminergic System in Mice. J Evol Biochem Phys 60, 397–408 (2024). https://doi.org/10.1134/S0022093024010307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024010307

Keywords:

Navigation