Skip to main content
Log in

Methods for Assessing Left Ventricular Diastolic Distensibility

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The major property of the myocardium that determines left ventricular (LV) filling is its distensibility. The simplest measure for its assessment is the LV end-diastolic pressure–volume ratio, although it can vary within a wide range and is highly dependent on inflow and resistance boundary conditions, making distensibility difficult to assess. Here, we consider six calculated indices of LV diastolic stiffness, most of which are based on Hooke’s law, comparing their stability, variation, and correlation coefficients with different hemodynamic parameters. The diastolic stiffness index No. 4 proved to be the only measure that takes into account an increase in LV stiffness over diastole. It shows a weak dependence on LV ejection fraction, heart rate, and other parameters of LV hemodynamics, and hence can be used to assess LV diastolic distensibility in various cardiac pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Lalande S, Mueller PJ, Chung CS (2017) The link between exercise and titin passive stiffness. Exp Physiol 102 (9): 1055–1066.https://doi.org/10.1113/EP086275

    Article  PubMed  PubMed Central  Google Scholar 

  2. Emig R, Zgierski-Johnston CM, Timmermann V, Taberner A, Nash MP, Kohl P, Peyronnet R (2021) Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 13(5): 587–610.https://doi.org/10.1007/s12551-021-00838-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu W, Wang Z (2019) Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering (Basel) 7(1): 2.https://doi.org/10.3390/bioengineering7010002

  4. Lakomkin VL, Abramov AA, Lukoshkova EV, Prosvirnin AV, Kapelko VI (2022) Hemodynamics and cardiac contractile function in type 1 diabetes. Kardiologiia 62(8): 33–37.https://doi.org/10.18087/cardio.2022.8.n1967.

    Article  CAS  PubMed  Google Scholar 

  5. Weiss JL, Frederiksen JW, Weisfeldt ML (1976) Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest 58: 751–760.https://doi.org/10.1172/JCI108522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gillebert TC, Lew WY (1991) Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol 261(3 Pt 2): H805–H813.https://doi.org/10.1152/ajpheart.1991.261.3.H805

    Article  CAS  PubMed  Google Scholar 

  7. Yano M, Kohno M, Kobayashi S, Obayashi M, Seki K, Ohkusa T, Miura T, Fujii T, Matsuzaki M (2001) Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am J Physiol Heart Circ Physiol 280(4): H1846–H1852.https://doi.org/10.1152/ajpheart.2001.280.4.H1846

    Article  CAS  PubMed  Google Scholar 

  8. Granzier H, Labeit S (2002) Cardiac titin: an adjustable multi-functional spring. J Physiol 541(Pt 2): 335–342.https://doi.org/10.1113/jphysiol.2001.014381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li N, Hang W, Shu H, Zhou N (2022) RBM20, Therapeutic Target to Alleviate Myocardial Stiffness via Titin Isoforms Switching in HFpEF. Front Cardiovasc Med 9: 928244.https://doi.org/10.3389/fcvm.2022.928244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loescher CM, Hobbach AJ, Linke WA (2022) Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res 118(14): 2903–2918.https://doi.org/10.1093/cvr/cvab328

    Article  CAS  PubMed  Google Scholar 

  11. Tharp C, Mestroni L, Taylor M (2020) Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. J Clin Med 9(9): 2770.https://doi.org/10.3390/jcm9092770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franssen C, González MA (2016) The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth Heart J 24(4): 259–267.https://doi.org/10.1007/s12471-016-0812-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kapelko VI (2022) The role of sarcomeric protein titin in the pump function of the heart. Uspehi fiziol nauk 53(2): 1–15.https://doi.org/10.31857/S0301179822020059

    Article  Google Scholar 

  14. Chirinos JA, Rietzschel ER, Shiva-Kumar P, De Buyzere ML, Zamani P, Claessens T, Geraci S, Konda P, De Bacquer D, Akers SR, Gillebert TC, Segers P (2014) Effective arterial elastance is insensitive to pulsatile arterial load. Hypertension 64(5): 1022–1031.https://doi.org/10.1161/HYPERTENSIONAHA.114.03696

    Article  CAS  PubMed  Google Scholar 

  15. Weber T (2020) The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. Int J Heart Fail 2(4): 209–230.https://doi.org/10.36628/ijhf.2020.0029

    Article  PubMed  PubMed Central  Google Scholar 

  16. Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF (1983) Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68(1): 50–58.https://doi.org/10.1161/01.cir.68.1.50

    Article  CAS  PubMed  Google Scholar 

  17. Solomon SB, Nikolic SD, Frater RW, Yellin EL (1999) Contraction-relaxation coupling: determi-nation of the onset of diastole. Am J Physiol 277(1): H23–H27.https://doi.org/10.1152/ajpheart.1999.277.1.H23

    Article  CAS  PubMed  Google Scholar 

  18. Sathyanarayanan SP, Oberoi M, Shaukat MHS, Stys T, Stys A (2022) Heart Failure with Preserved Ejection Fraction: Concise Review. SD Med 75(11): 513–517.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project No. 23-15-00275). No additional grants were obtained to carry out or supervise this particular research.

Author information

Authors and Affiliations

Authors

Contributions

V.I.K. and V.L.L.—conceptualization and experimental design; A.A.A., A.V.P., V.L.L.—data collection; A.A.A., A.V.P., V.L.L., V.I.K.—data processing and representation; V.L.L., V.I.K., A.A.A.—writing and editing the manuscript.

Corresponding author

Correspondence to V. L. Lakomkin.

Ethics declarations

ETHICS APPROVAL

Experiments with animals were conducted in compliance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm) and were approved by the Bioethics Committee at Chazov National Medical Research Center for Cardiology (Minutes No. LEPS/18.07.2023).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapelko, V.I., Lakomkin, V.L., Abramov, A.A. et al. Methods for Assessing Left Ventricular Diastolic Distensibility. J Evol Biochem Phys 60, 391–396 (2024). https://doi.org/10.1134/S0022093024010290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024010290

Keywords:

Navigation