Skip to main content
Log in

Diagnostic Potential of Free Blood Choline as a Biomarker of the Physiological Status of the Organism

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Choline is an essential nutrient. Mitochondrial dysfunctions, oxidative stress and associated risks of developing non-alcoholic fatty liver disease, cardiovascular disease, muscular dystrophy, and fetal neural tube pathology are associated with insufficient choline intake. At the same time, excessive consumption of choline is associated with the accumulation in the blood of a uremic toxin—trimethylamine oxide, the bioprecursor of which is not phosphatidylcholine, but free blood choline. The content of choline and its metabolites in blood plasma is associated with different types of vascular pathologies, and allows predicting the severity of cardiovascular and other associated diseases. Contradictory information about the norm and deviations from the norm of the content of free choline in the blood plasma is due to insufficient attention to the stabilization of the content of free choline in the blood plasma at the stages preceding the instrumental analysis. When using EDTA as an anticoagulant and following a cold regimen (not higher than 4°C) immediately after blood sampling and up to instrumental analysis, it is possible to avoid an increase in the concentration of choline in ex vivo plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Abbreviations

BMI:

body mass index

EDTA:

ethylenediaminetetraacetic acid

FMO3:

flavin-containing monooxygenase 3

HDL:

high-density lipoproteins

HPLC-MS/MS:

high-performance liquid chromatography with tandem mass spectrometric detection

HPLC-UV:

high-performance liquid chromatography with ultraviolet detection

LDL:

low-density lipoprotein

NMR spectroscopy:

nuclear magnetic resonance spectroscopy

SAM:

S-adenosyl methionine

ROS:

reactive oxygen species

TMA:

trimethylamine

TMAO:

trimethylamine oxide

REFERENCES

  1. Zeisel SH (2000) Choline: an essential nutrient for humans. Nutrition 16 (7–8): 669–671. https://doi.org/10.1016/s0899-9007(00)00349-x

    Article  CAS  PubMed  Google Scholar 

  2. Goh YO, Cheam G, Wang Y (2021) Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. J Agric Food Chem 69: 10774–10789. https://doi.org/10.1021/acs.jafc.1c03077

    Article  CAS  PubMed  Google Scholar 

  3. Shim E, Park E (2022) Choline intake and its dietary reference values in Korea and other countries: a review. Nutr Res Pract 16: 126–133. https://doi.org/10.4162/nrp.2022.16.S1.S126

    Article  Google Scholar 

  4. Rucker RB, Zempleni J, Suttie JW, McCormick DB (2007) Handbook of vitamins (4th ed). Taylor and Francis, 459–477. ISBN 9780849340222

    Google Scholar 

  5. Plotnikoff GA, Dobberstein L, Raatz S (2023) Nutritional Assessment of the Symptomatic Patient on a Plant-Based Diet: Seven Key Questions. Nutrients 15: 1387. https://doi.org/10.3390/nu15061387

    Article  PubMed  PubMed Central  Google Scholar 

  6. Osipova D, Kokoreva K, Lazebnik L, Golovanova E, Pavlov C, Dukhanin A, Orlova S, Starostin K (2022) Regression of Liver Steatosis Following Phosphatidylcholine Administration: A Review of Molecular and Metabolic Pathways Involved. Front Pharmacol 13: 797923. https://doi.org/10.3389/fphar.2022.797923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corbin KD, Zeisel SH (2012) Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Current Opinion Gastroenterol 28(2): 159–165. https://doi.org/10.1097/MOG.0b013e32834e7b4b

    Article  CAS  Google Scholar 

  8. Chen X, Xue H, Fang W, Chen K, Chen S, Yang W, Shen T, Chen X, Zhang P, Ling W (2019) Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf 2 mediated antioxidant capacity. Redox Biol 21: 101068. https://doi.org/10.1016/J.REDOX.2018.101068

    Article  CAS  PubMed  Google Scholar 

  9. Dietary reference values for choline (2016) EFSA J. https://doi.org/10.2903/j.efsa.2016.44842016

  10. Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Zeisel SH, Willett WC, Chan JM (2012) Choline intake and risk of lethal prostate cancer: incidence and survival. Am J Clin Nutrit 96 (4): 855–863. https://doi.org/10.3945/ajcn.112.039784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han P, Bidulescu A, Barber JR, Zeisel SH, Joshu CE, Prizment AE, Vitolins MZ, Platz EA (2019) Dietary choline and betaine intakes and risk of total and lethal prostate cancer in the Atherosclerosis Risk in Communities (ARIC) Study. Cancer Causes Control 30(4): 343–354. https://doi.org/10.1007/s10552-019-01148-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26: 229–250. https://doi.org/10.1146/annurev.nutr.26.061505.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Obeid R, Derbyshire E, Schön C (2022) Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Advanc Nutrit 13(6): 2445–2457. https://doi.org/10.1093/advances/nmac082

    Article  Google Scholar 

  14. Buchman AL (2009) The addition of choline to parenteral nutrition. Gastroenterology 137: 119–128. https://doi.org/10.1053/j.gastro.2009.08.010

    Article  CAS  Google Scholar 

  15. Troisi J, Cinque C, Giugliano L, Symes S, Richards S, Adair D, Cavallo P, Sarno L, Scala G, Caiazza M, Guida M (2019) Metabolomic change due to combined treatment with myo-inositol, D-chiro-inositol and glucomannan in polycystic ovarian syndrome patients: a pilot study. J Ovar Res 12(1): 25. https://doi.org/10.1186/s13048-019-0500-x

    Article  Google Scholar 

  16. Deprince A, Haas JT, Staels B (2020) Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab 42: 101092. https://doi.org/10.1016/j.molmet.2020.101092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du X, Wu Z, Xu Y, Liu Y, Liu W, Wang T, Li C, Zhang C, Yi F, Gao L, Liang X, Ma C (2018) Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice. Cell Mol Immunol 16(11): 878–886. https://doi.org/10.1038/s41423-018-0032-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Tian R, She Z, Cai J, Li H (2020) Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biol Med 152: 116−141. https://doi.org/10.1016/j.freeradbiomed.2020.02.025

    Article  CAS  Google Scholar 

  19. García-Ruiz C, Fernández‐Checa JC (2018) Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Communicat 2(12): 1425–1439. https://doi.org/10.1002/hep4.1271

    Article  CAS  Google Scholar 

  20. Teodoro JS, Rolo AP, Duarte FV, Simões AM, Palmeira CM (2008) Differential alterations in mitochondrial function induced by a choline-deficient diet: Understanding fatty liver disease progression. Mitochondrion 8(5–6): 367–376. https://doi.org/10.1016/j.mito.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka S, Miyanishi K, Kobune M, Kawano Y, Hoki T, Kubo T, Hayashi T, Sato T, Sato Y, Takimoto R, Kato J (2013) Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J Gastroenterol 48(11): 1249–1258. https://doi.org/10.1007/s00535-012-0739-0

    Article  CAS  PubMed  Google Scholar 

  22. Pei K, Gui T, Kan D, Feng H, Jin Y, Yang Y, Zhang Q, Du Z, Gai Z, Wu J, Li Y (2020) An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BioMed Res Int 1–12: 4020249. https://doi.org/10.1155/2020/4020249

    Article  CAS  Google Scholar 

  23. Ashraf NU, Altaf M (2018) Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. Mutat Res Rev Mut Res 778: 1–12. https://doi.org/10.1016/j.mrrev.2018.07.002

    Article  CAS  Google Scholar 

  24. Yoo N, Jeon S, Nam Y, Park Y-J, Won SB, Kwon Y (2015) Dietary Supplementation of Genistein Alleviates Liver Inflammation and Fibrosis Mediated by a Methionine-Choline-Deficient Diet in db/db Mice. J Agricult Food Chem 63(17): 4305–4311. https://doi.org/10.1021/acs.jafc.5b00398

    Article  CAS  Google Scholar 

  25. Alves FM, Caldow MK, Trieu J, Naim T, Montgomery MK, Watt MJ, Lynch GS, Koopman R (2019) Choline administration attenuates aspects of the dystrophic pathology in mdx mice. Clin Nutrit Exp 24: 83–91. https://doi.org/10.1016/j.yclnex.2018.12.005

    Article  Google Scholar 

  26. Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, Xue Y, Sleigh A, Cochran E, Adams C, Dev Borman A, Russel-Jones D, Gorden P, Semple RK, Saudek V, O’Rahilly S, Walther TC, Barroso I, Savage DB (2014) Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci USA 111(24): 8901–8906. https://doi.org/10.1073/pnas.1408523111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dave N, Judd JM, Decker A, Winslow W, Sarette P, Villarreal Espinosa O, Tallino S, Bartholomew SK, Bilal A, Sandler J, McDonough I,Winstone J K, Blackwood E A, Glembotski C, Karr T, Velazquez R (2023) Dietary choline intake is necessary to prevent systems-wide organ pathology and reduce Alzheimer’s disease hallmarks. Aging Cell 22: e13775. https://doi.org/10.1111/acel.13775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Penry JT, Manore MM (2008) Choline: An Important Micronutrient for Maximal Endurance-Exercise Performance? International Journal of Sport Nutrition and Exercise Metabolism 18(2): 191–203. https://doi.org/10.1123/ijsnem.18.2.191

    Article  CAS  PubMed  Google Scholar 

  29. Dibella M, Thomas MS, Alyousef H, Millar C, Blesso C, Malysheva O (2020) Choline intake as supplement or as a component of eggs increases plasma choline and reduces interleukin-6 without modifying plasma cholesterol in participants with metabolic syndrome. Nutrients12: 1e. https://doi.org/10.3390/nu12103120

    Article  CAS  Google Scholar 

  30. Rankovic A, Godfrey H, Grant CE, Shoveller AK, Bakovic M, Kirby G (2023) Serum metabolomic analysis of the dose-response effect of dietary choline in overweight male cats fed at maintenance energy requirements. PLoS One 18(1): e0280734. https://doi.org/10.1371/journal.pone.0280734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhan X, Fletcher L, Huyben D, Cai H, Dingle S, Qi N, Huber L-A, Wang B and Li J (2023) Choline supplementation regulates gut microbiome diversity, gut epithelial activity, and the cytokine gene expression in gilts. Front Nutr 10: 1101519. https://doi.org/10.3389/fnut.2023.1101519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Velazquez R, Ferreira E, Knowles S, Fux C, Rodin A, Winslow W, Oddo S (2019) Lifelong choline supplementation ameliorates Alzheimer’s disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell 18: e13037. https://doi.org/10.1111/acel.13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165: 111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P (2021) Gut microbes impact stroke severity via the trimethylamine N-Oxide pathway. Cell Host Microbe 29: 1199–1208. https://doi.org/10.1016/j.chom.2021.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang S, Li X, Yang F, Zhao R, Pan X, Liang J (2019) Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front Pharmacol 10: 1360. https://doi.org/10.3389/fphar.2019.01360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite Trimethylamine-N-Oxide. mBio 6: e02481-14. https://doi.org/10.1128/mBio.02481-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoo W, Zieba JK, Foegeding NJ, Torres TP, Shelton CD, Shealy NG (2021) High-Fat Diet–Induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373: 813–818. https://doi.org/10.1126/science.aba3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren D, Liu Y, Zhao Y, Yang X (2016) Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem Toxicol 94: 203–212. https://doi.org/10.1016/j.fct.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  40. Pan XF, Yang JJ, Shu XO, Moore SC, Palmer ND, Guasch-Ferré M, Herrington DM, Harada S, Eliassen H, Wang TJ, Gerszten RE, Albanes D, Tzoulaki I, Karaman I, Elliott P, Zhu H, Wagenknecht LE, Zheng W, Cai H, Cai Q, Matthews CE, Menni C, Meyer KA, Lipworth LP, Ose J, Fornage M, Ulrich CM, Yu D (2021) Associations of circulating choline and its related metabolites with cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr 114(3): 893–906. https://doi.org/10.1093/ajcn/nqab152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mujica M, Lewis E, Jacobs R, Letourneau N, Bell R, Field C, Lamers Y (2020) Plasma Free Choline Concentration Did Not Reflect Dietary Choline Intake in Early and Late Pregnancy: Findings from the APrON Study. Curr Dev Nutr 4(Suppl 2): 1825. https://doi.org/10.1093/cdn/nzaa067_052

    Article  PubMed Central  Google Scholar 

  42. Zeisel SH (2010) Choline. In: Coates PM, Betz JM, Blackman MR (eds) Encyclopedia of Dietary Supplements; 2nd ed. Informa Healthcare, London and New York, 136–143.

    Chapter  Google Scholar 

  43. Finglas PM (2000) Dietary Reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends Food Sci Technol 11(8): 296–297. https://doi.org/10.1016/s0924-2244(01)00010-3

    Article  CAS  Google Scholar 

  44. Wiedeman AM, Dyer RA, Green TJ, Xu Z, Barr SI, Innis SM, Kitts DD (2018) Variations in plasma choline and metabolite concentrations in healthy adults. Clin Biochem 60: 77–83. https://doi.org/10.1016/j.clinbiochem.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  45. Gossell-Williams M, Fletcher H, McFarlane-Anderson N, Jacob A, Patel J, Zeisel S (2005) Dietary intake of choline and plasma choline concentrations in pregnant women in Jamaica. West Indian Med J 54(6): 355–359. https://doi.org/10.1590/s0043-31442005000600002

    Article  CAS  PubMed  Google Scholar 

  46. Holm PI, Ueland PM, Kvalheim G, Lien EA (2003) Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 49: 286–294. https://doi.org/10.1373/49.2.286

    Article  CAS  PubMed  Google Scholar 

  47. Mlodzik-Czyzewska MA, Malinowska AM, Szwengiel A, Chmurzynska A (2002) Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent. J Hum Nutr Diet 35: 701–712. https://doi.org/10.1111/jhn.13046

    Article  Google Scholar 

  48. Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG, Gueimonde M, Arias JL (2020) The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 12 (8): 2340. https://doi.org/10.3390/nu12082340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choline—dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline—NCBI bookshelf n.d. https://www.ncbi.nlm.nih.gov/books/NBK114308/. Accessed 2 May 2022.

  50. Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y (2021) Mechanistic role of boswellic acids in Alzheimer’s disease: emphasis on anti-inflammatory properties. Biomed Pharmacother 144: 112250. https://doi.org/10.1016/J.BIOPHA.2021.112250

    Article  CAS  PubMed  Google Scholar 

  51. Wu G, Zhang L, Li T, Zuniga A, Lopaschuk GD, Li L, Jacobs RL, Vance DE (2013) Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. J Biol Chem 288(2): 837–847. https://doi.org/10.1074/jbc.M112.415117

    Article  CAS  PubMed  Google Scholar 

  52. Dibaba DT, Johnson KC, Kucharska-Newton AM, Meyer K, Zeisel SH, Bidulescu A (2020) The Association of Dietary Choline and Betaine with the Risk of Type 2 Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 43(11): 2840–2846. https://doi.org/10.2337/dc20-0733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Danne O, Möckel M (2010) Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Expert Rev Mol Diagnost 10(2): 159–171. https://doi.org/10.1586/erm.10.2

    Article  CAS  Google Scholar 

  54. Van Wijk N, Watkins C, Böhlke M, Maher T, Hageman R, Kamphuis P, Wurtman R (2012) Plasma choline concentration varies with different dietary levels of vitamins B6, B12 and folic acid in rats maintained on choline-adequate diets. Br J Nutrit 107(10): 1408–1412. https://doi.org/10.1017/S0007114511004570

    Article  CAS  Google Scholar 

  55. Nurk E, Refsum H, Bjelland I, Drevon CA, Tell GS, Ueland PM, Vollset SE, Engedal K, Nygaard HA, Smith DA (2013) Plasma free choline, betaine and cognitive performance: the Hordaland Health Study. Br J Nutrit 109(3): 511–519. https://doi.org/10.1017/S0007114512001249

    Article  CAS  Google Scholar 

  56. Øyen J, Gjesdal CG, Karlsson T, Svingen GF, Tell GS, Strand E, Drevon CA, Vinknes KJ, Meyer K, Ueland PM, Nygård O (2017) Dietary Choline Intake Is Directly Associated with Bone Mineral Density in the Hordaland Health Study. J Nutrition 147(4): 572–578. https://doi.org/10.3945/jn.116.243006

    Article  CAS  Google Scholar 

  57. Watson GA, Sanz-Garcia E, Zhang W-J, Liu ZA, Yang SC, Wang B, Liu S, Kubli S, Berman H, Pfister T, Genta S, Spreafico A, Hansen AR, Bedard PL, Lheureux S, Razak A, Cescon D, Butler MO, Xu W, Chen E (2022) Increase in serum choline levels predicts for improved progression-free survival (PFS) in patients with advanced cancers receiving pembrolizumab. J Immun Therapy Cancer 10(6): e004378 https://doi.org/10.1136/jitc-2021-004378

    Article  Google Scholar 

  58. Li S, Guo B, Song J, Deng X, Cong Y, Li P, Zhao K, Liu L, Xiao G, Xu F, Ye Y, Zhao Z, Yu M, Xu Y, Sang J, Zhang J (2012) Plasma choline-containing phospholipids: potential biomarkers for colorectal cancer progression. Metabolomics 9(1): 202–212. https://doi.org/10.1007/s11306-012-0439-z

    Article  CAS  Google Scholar 

  59. Mafra D, Cardozo L, Ribeiro-Alves M, Bergmane P, Shiels PG, Stenvinkel P (2022) Short Report: Choline plasma levels are related to Nrf2 transcriptional expression in chronic kidney disease? Clin Nutrition ESPEN 50: 318–321. https://doi.org/10.1016/j.clnesp.2022.06.008

    Article  CAS  Google Scholar 

  60. Schartum-Hansen H, Pedersen ER, Svingen GF, Ueland P M, Seifert R, Ebbing M, Strand E, Bleie Ø, Nygård O (2014) Plasma choline, smoking, and long-term prognosis in patients with stable angina pectoris. Eur J Prevent Cardiol 22(5): 606–614. https://doi.org/10.1177/2047487314524867

    Article  Google Scholar 

  61. Garbuzenko DV, Belov DV (2021) Non-alcoholic fatty liver disease as an independent factor of cardiometabolic risk of cardiovascular diseases. Exp Clin Gastroenterol 10: 22–34. https://doi.org/10.31146/1682-8658-ecg-194-10-22-34

    Article  Google Scholar 

  62. Ying J, Rahbar MH, Hallman DM, Hernandez LM, Spitz MR, Forman MR, Gorlova OY (2013) Associations between Dietary Intake of Choline and Betaine and Lung Cancer Risk. PLOS One 8(2): e54561. https://doi.org/10.1371/journal.pone.0054561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Konstantinova SV, Tell GS, Vollset SE, Nygård O, Bleie Ø, Ueland PM (2008) Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 138(5): 914–920. https://doi.org/10.1093/jn/138.5.914

    Article  CAS  PubMed  Google Scholar 

  64. Park S, Choi SG, Yoo SM, Son JH, Jung YK (2014) Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 10(11): 1906–1920. https://doi.org/10.4161/auto.32177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Z, Tang WHW, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35(14): 904–910. https://doi.org/10.1093/eurheartj/ehu002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zuo H, Svingen GFT, Tell GS, Ueland PM, Vollset SE, Pedersen ER, Ulvik A, Meyer K, Nordrehaug JE, Nilsen DWT, Bønaa KH, Nygård O (2018) Plasma Concentrations and Dietary Intakes of Choline and Betaine in Association with Atrial Fibrillation Risk: Results From 3 Prospective Cohorts with Different Health Profiles. J Am Heart Assoc 7(8): e008190. https://doi.org/10.1161/jaha.117.008190

    Article  PubMed  PubMed Central  Google Scholar 

  67. Roe AJ, Zhang S, Bhadelia RA, Johnson EJ, Lichtenstein AH, Rogers GT, Rosenberg IH, Smith CE, Zeisel SH, Scott TM (2017) Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am J Clin Nutr 105(6): 1283–1290. https://doi.org/10.3945/ajcn.116.137158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R (2020) Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Labor Med 58(5): 733–740. https://doi.org/10.1515/cclm-2019-1146

    Article  CAS  Google Scholar 

  69. Cho CE, Aardema NDJ, Bunnell ML, Larson DP, Aguilar SS, Bergeson JR, Malysheva OV, Caudill MA, Lefevre M (2020) Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients 12(8): 2220. https://doi.org/10.3390/nu12082220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rahimi P, Joseph Y (2019) Enzyme-based biosensors for choline analysis: A review. Trends Analyt Chem 110: 367–374. https://doi.org/10.1016/j.trac.2018.11.035

    Article  CAS  Google Scholar 

  71. Saucerman JR, Winstead CE, Jones TM (1984) Quantitative Gas Chromatographic Headspace Determination of Choline in Adult and Infant Formula Products. J Assoc Anal Chem 67(5): 982–985. https://doi.org/10.1093/jaoac/67.5.982

    Article  CAS  Google Scholar 

  72. Zhang L, Liu Y, Chen G (2004) Simultaneous determination of allantoin, choline and l-arginine in Rhizoma Dioscoreae by capillary electrophoresis. J Chromat A 1043(2): 317–321. https://doi.org/10.1016/j.chroma.2004.06.003

    Article  CAS  Google Scholar 

  73. Lin L, Li R, Wang L, Qiu Y (2018) Determination of choline, putrescine and cadaverine in boletus by ion chromatography with suppressed conductivity detection. Chin J Chromat 36(11): 1189. https://doi.org/10.3724/sp.j.1123.2018.06027

    Article  CAS  Google Scholar 

  74. Shadlaghani A, Farzaneh M, Kinser D, Reid RC (2019) Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes. Sensors 19(3): 447. https://doi.org/10.3390/s19030447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garcia E, Shalaurova I, Matyus SP, Wolak-Dinsmore J, Oskardmay DN, Connelly MA (2022) Quantification of choline in serum and plasma using a clinical nuclear magnetic resonance analyzer. Clin Chim Acta 524: 106–112. https://doi.org/10.1016/j.cca.2021.11.031

    Article  CAS  PubMed  Google Scholar 

  76. Ocque AJ, Stubbs JR, Nolin TD (2015) Development and validation of a simple UHPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. J Pharm Biomed Anal 109: 128–135. https://doi.org/10.1016/j.jpba.2015.02.040

    Article  CAS  PubMed  Google Scholar 

  77. Rox K, Rath S, Pieper DH, Vital M, Brönstrup M (2021) A simplified LC-MS/MS method for the quantification of the cardiovascular disease (CVD) biomarker trimethylamine-Noxide (TMAO) and its precursors. J Pharm Anal 11(4): 523–528. https://doi.org/10.1016/j.jpha.2021.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  78. Garcia E, Shalaurova I, Matyus SP, Wolak-Dinsmore J, Oskardmay DN, Connelly MA (2022) Quantification of choline in serum and plasma using a clinical nuclear magnetic resonance analyzer. Clin Chim Acta 524: 106–112. https://doi.org/10.1016/j.cca.2021.11.031

    Article  CAS  PubMed  Google Scholar 

  79. Awwad HM, Kirsch SH, Geise J, Obeid R (2014) Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels. J Chromat B 957: 41–45. https://doi.org/10.1016/j.jchromb.2014.02.030

    Article  CAS  Google Scholar 

  80. Yue B, Pattison E, Roberts WL, Rockwood AL, Danne O, Lueders C, Möckel M (2008) Choline in Whole Blood and Plasma: Sample Preparation and Stability. Clin Chem 54(3): 590–593. https://doi.org/10.1373/clinchem.2007.094201

    Article  CAS  PubMed  Google Scholar 

  81. Kaplan A (2021) Preparation, Storage, and Characteristics of Whole Blood, Blood Components, and Plasma Derivatives. Transfus Med 11: 59–89. https://doi.org/10.1002/9781119599586.ch5

    Article  Google Scholar 

  82. Ohkawa R, Kurano M, Sakai N, Kishimoto T, Nojiri T, Igarashi K, Hosogaya S, Ozaki Y, Dohi T, Miyauchi K, Daida H, Aoki J, Okubo S, Ikeda H, Tozuka M, Yatomi Y (2018) Measurement of plasma choline in acute coronary syndrome: importance of suitable sampling conditions for this assay. Scient Rep 8(1): 4725. https://doi.org/10.1038/s41598-018-23009-x

    Article  CAS  Google Scholar 

  83. Burdeynaya AL, Afanasyeva OI, Klesareva EA, Tmoyan NA, Razova OA, Afanasyeva MI, Ezhov MV, Pokrovsky SN (2021) Role of inflammation, autotaxin and lipoprotein (a) in degenerative aortic valve stenosis in patients with coronary artery disease. Cardiovasc Ther Prevent 20(2): 2598. https://doi.org/10.15829/1728-8800-2021-2598

    Article  Google Scholar 

  84. Klatt KC (2023) Choline and phosphatidylcholine. In: Encycloped Human Nutrit, 162–174. https://doi.org/10.1016/b978-0-12-821848-8.00020-2

    Chapter  Google Scholar 

  85. Liu L, Jin X, Wu Y, Yang M, Xu T, Li X, Ren J, Yan LL (2020) A Novel Dried Blood Spot Detection Strategy for Characterizing Cardiovascular Diseases. Front Cardiovasc Med 7: 542519. https://doi.org/10.3389/fcvm.2020.542519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-15-00155).

Author information

Authors and Affiliations

Authors

Contributions

Collection of materials (E.I.S., N.V.G., M.A.L.), manuscript writing and editing (E.I.S., N.V.G., M.A.L.), illustrations (M.A.L.).

Corresponding author

Correspondence to E. I. Savelieva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 12, pp. 1763–1779https://doi.org/10.31857/S0869813923120099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelieva, E.I., Leninskii, M.A. & Goncharov, N.V. Diagnostic Potential of Free Blood Choline as a Biomarker of the Physiological Status of the Organism. J Evol Biochem Phys 59, 2228–2241 (2023). https://doi.org/10.1134/S002209302306025X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302306025X

Keywords:

Navigation