Skip to main content
Log in

NeuN Expression in Spinal Neurons Projecting to the Cerebellum

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We studied the distinctive features of NeuN immunolabeling in the neurons located in the four cat spinal cord structures sending projections to the cerebellum: Clarke’s nucleus and border cells (L4 segment), central cervical nucleus (C3 segment), and Stilling’s nucleus (S2 segment). Using morphometric and densitometric analysis, we demonstrated that all the neurons of interest share a striking feature, namely an extremely low level of cytoplasmic NeuN immunolabeling against a high level of nuclear immunolabeling of this neuronal nuclear antigen, commonly used as a neuronal marker. The neuronal soma size averaged 1000–1850 µm2, which is comparable to another type of large neurons detected in slices, motoneurons (1140–1660 µm2). Therefore, we used motoneuronal populations in the corresponding segments to compare the magnitude of their optical density. The relative optical density of the neurons of interest was several times lower than that of the motoneurons (0.060 ± 0.030 vs 0.330 ± 0.127). No significant differences in optical density were revealed between the above four spinal cord structures. Given that all these cell populations are morphologically unique and similar, we believe that the features of NeuN expression can be used as a simple tool to visualize neurons sending projections to the cerebellum. This can be instrumental both in targeted morphological examination and in histological control after experimental exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bosco G, Poppele RE (2001) Proprioception from a spinocerebellar perspective. Physiol Rev 81: 539–568. https://doi.org/10.1152/physrev.2001.81.2.539

    Article  CAS  PubMed  Google Scholar 

  2. Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173: 185–200. https://doi.org/10.1016/0006-8993(79)90620-6

    Article  CAS  PubMed  Google Scholar 

  3. Baek M, Menon V, Jessell TM, Hantman AW, Dasen JS (2019) Molecular logic of spinocerebellar tract neuron diversity and connectivity. Cell Rep 27: 2620–2635. e4. https://doi.org/10.1016/j.celrep.2019.04.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boehme CC (1968) The neural structure of Clarke’s nucleus of the spinal cord. J Comp Neurol 132: 445–461. https://doi.org/10.1002/cne.901320306

    Article  CAS  PubMed  Google Scholar 

  5. Mann MD (1973) Clarke’s column and the dorsal spinocerebellar tract: a review. Brain Behav Evol 7: 34–83. https://doi.org/10.1159/000124397

    Article  CAS  PubMed  Google Scholar 

  6. Petras JM, Cummings JF (1977) The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord. J Comp Neurol 173: 693–715. https://doi.org/10.1002/cne.901730405

    Article  CAS  PubMed  Google Scholar 

  7. Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181: 833–852. https://doi.org/10.1002/cne.901810409

    Article  CAS  PubMed  Google Scholar 

  8. Clarke JAL (1859) Further researches on the grey substance of the spinal cord. Philos Trans R Soc Lond 149: 437–467. https://doi.org/10.1098/rstl.1859.0022

    Article  Google Scholar 

  9. Ha H, Liu CN (1968) Cell origin of the ventral spinocerebellar tract. J Comp Neurol 133: 185–206. https://doi.org/10.1002/cne.901330204

    Article  CAS  PubMed  Google Scholar 

  10. Shrestha SS, Bannatyne BA, Jankowska E, Hammar I, Nilsson E, Maxwell DJ (2012) Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord. Neuroscience 226: 253–269. https://doi.org/10.1016/j.neuroscience.2012.09.015

    Article  CAS  Google Scholar 

  11. Xu Q, Grant G (1988) Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat. Exp Brain Res 72: 562–576. https://doi.org/10.1007/BF00250601

    Article  CAS  PubMed  Google Scholar 

  12. Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184: 81–106. https://doi.org/10.1002/cne.901840106

    Article  CAS  PubMed  Google Scholar 

  13. Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN (1972) Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res 43: 276–279. https://doi.org/10.1016/0006-8993(72)90296-X

    Article  CAS  PubMed  Google Scholar 

  14. Edgley SA, Jankowska E (1988) Information processed by dorsal horn spinocerebellar tract neurones in the cat. J Physiol 397: 81–97. https://doi.org/10.1113/jphysiol.1988.sp016989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jankowska E, Nilsson E, Hammar I (2011) Processing information related to centrally initiated locomotor and voluntary movements by feline spinocerebellar neurones. J Physiol 589: 5709–5725. https://doi.org/10.1113/jphysiol.2011.213678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pop IV, Espinosa F, Blevins CJ, Okafor PC, Ogujiofor OW, Goyal M, Mona B, Landy MA, Dean KM, Gurumurthy CB, Lai HC (2022) Structure of long-range direct and indirect spinocerebellar pathways as well as local spinal circuits mediating proprioception. J Neurosci Off J Soc Neurosci 42: 581–600. https://doi.org/10.1523/JNEUROSCI.2157-20.2021

    Article  CAS  Google Scholar 

  17. Hirai N, Hongo T, Sasaki S, Yoshida K (1979) The neck and labyrinthine influences on cervical spinocerebellar tract neurones of the central cervical nucleus in the cat. Prog Brain Res 50: 529–536. https://doi.org/10.1016/S0079-6123(08)60851-1

    Article  CAS  PubMed  Google Scholar 

  18. Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 266: 376–397. https://doi.org/10.1002/cne.902660306

    Article  CAS  PubMed  Google Scholar 

  19. Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280: 231–253. https://doi.org/10.1002/cne.902800206

    Article  CAS  PubMed  Google Scholar 

  20. Sengul G, Fu Y, Yu Y, Paxinos G (2015) Spinal cord projections to the cerebellum in the mouse. Brain Struct Funct 220: 2997–3009. https://doi.org/10.1007/s00429-014-0840-7

    Article  PubMed  Google Scholar 

  21. Edgley SA, Grant GM (1991) Inputs to spinocerebellar tract neurones located in Stilling’s nucleus in the sacral segments of the rat spinal cord. J Comp Neurol 305: 130–138. https://doi.org/10.1002/cne.903050112

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, Onozato T, Wu X, Sasamura K, Sakimura K, Sugihara I (2020) Dense projection of Stilling’s nucleus spinocerebellar axons that convey tail proprioception to the midline area in lobule VIII of the mouse cerebellum. Brain Struct Funct 225: 621–638. https://doi.org/10.1007/s00429-020-02025-6

    Article  PubMed  Google Scholar 

  23. Merkul’eva NS, Veshchitskii AA, Shkorbatova PYu, Shenkman BS, Musienko PE, Makarov FN (2017) Morphometric characteristics of the dorsal nuclei of Clarke in the rostral segments of the lumbar part of the spinal cord on cats. Neurosci Behav Physiol 47: 851–856. https://doi.org/10.1007/s11055-017-0481-4

    Article  Google Scholar 

  24. Veshchitskii A, Shkorbatova P, Merkulyeva N (2022) Neurochemical atlas of the cat spinal cord. Front Neuroanat 16: 1034395. https://doi.org/10.3389/fnana.2022.1034395

    Article  PubMed  PubMed Central  Google Scholar 

  25. Olude MA, Idowu AO, Mustapha OA, Olopade JO, Akinloye AK (2015) Spinal cord studies in the african giant rat (Cricetomys gambianus, Waterhouse). Niger J Physiol Sci Off Publ Physiol Soc Niger 30: 25–32.

    CAS  Google Scholar 

  26. Terman JR, Wang XM, Martin GF (1998) Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana. Anat Rec 251: 528–547. https://doi.org/10.1002/(SICI)1097-0185(199808)251:4<528::AID-AR9>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  27. Watson C, Sengul G, Tanaka I, Rusznak Z, Tokuno H (2015) The spinal cord of the common marmoset (Callithrix jacchus). Neurosci Res 93: 164–175. https://doi.org/10.1016/j.neures.2014.12.012

    Article  PubMed  Google Scholar 

  28. Grant G, Wiksten B, Berkley KJ, Aldskogius H (1982) The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol 204: 336–348. https://doi.org/10.1002/cne.902040405

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518: 161–166. https://doi.org/10.1016/j.neulet.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  30. Cooper S, Sherrington CS (1940) Gower’s tract and spinal border cells. Brain 63: 123–134. https://doi.org/10.1093/brain/63.2.123

    Article  Google Scholar 

  31. Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E (2019) A hox dode defines spinocerebellar neuron subtype regionalization. Cell Rep 29: 2408–2421. e4. https://doi.org/10.1016/j.celrep.2019.10.048

    Article  CAS  PubMed  Google Scholar 

  32. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Dev Camb Engl 116: 201–211. https://doi.org/10.1242/dev.116.1.201

    Article  CAS  Google Scholar 

  33. Merkulyeva N, Mikhalkin A, Zykin P (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cell Mol Neurobiol 38: 1137–1143. https://doi.org/10.1007/s10571-018-0585-6

    Article  CAS  PubMed  Google Scholar 

  34. Merkulyeva NS, Mikhalkin AA, Nikitina NI (2020) Characteristics of the neurochemical state of neurons in the mesencephalic nucleus of the trigeminal nerve in cats. Neurosci Behav Physiol 50:511–515. https://doi.org/10.1007/s11055-020-00927-w

    Article  CAS  Google Scholar 

  35. Mikhalkin AA, Merkulyeva NS (2021) Peculiarities of age-related dynamics of neurons in the cat lateral geniculate nucleus as revealed in frontal versus sagittal slices. J Evol Biochem Physiol 57: 1001–1007. https://doi.org/10.1134/S0022093021050021

    Article  Google Scholar 

  36. Shkorbatova PY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. Anat Rec 302: 1628–1637. https://doi.org/10.1002/ar.24054

    Article  Google Scholar 

  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  38. Edgley SA, Gallimore CM (1988) The morphology and projections of dorsal horn spinocerebellar tract neurones in the cat. J Physiol 397: 99–111. https://doi.org/10.1113/jphysiol.1988.sp016990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sengul G, Watson C, Tanaka I, Paxinos G (2012) Atlas of the spinal cord: mouse, rat, rhesus, marmoset, and human. Elsevier Science. pp 360.

    Google Scholar 

  40. Shapley R, Enroth-Cugell C (1984) Visual adaptation and retinal gain controls. Prog Retin Res 3: 263–346. https://doi.org/10.1016/0278-4327(84)90011-7

    Article  Google Scholar 

  41. Cummings JF, Petras JM (1977) The origin of spinocerebellar pathways. I. The nucleus cervicalis centralis of the cranial cervical spinal cord. J Comp Neurol 173: 655–692. https://doi.org/10.1002/cne.901730404

    Article  CAS  PubMed  Google Scholar 

  42. Morin F, Schwartz HG, O’leary JL (1951) Experimental study of the spinothalamic and related tracts. Acta Psychiatr Neurol Scand 26: 371–396. https://doi.org/10.1111/j.1600-0447.1951.tb09681.x

    Article  CAS  PubMed  Google Scholar 

  43. Sprague JM (1953) Spinal border cells and their role in postural mechanism (Schiff-Sherrington phenomenon). J Neurophysiol 16: 464–474. https://doi.org/10.1152/jn.1953.16.5.464

    Article  CAS  PubMed  Google Scholar 

  44. Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci 13: 1233–1239. https://doi.org/10.1038/nn.2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomson DB, Isu N, Wilson VJ (1996) Responses of neurons of the cat central cervical nucleus to natural neck and vestibular stimulation. J Neurophysiol 76: 2786–2789. https://doi.org/10.1152/jn.1996.76.4.2786

    Article  CAS  PubMed  Google Scholar 

  46. Xiong G, Matsushita M (2001) Ipsilateral and contralateral projections from upper cervical segments to the vestibular nuclei in the rat. Exp Brain Res 141: 204–217. https://doi.org/10.1007/s002210100867

    Article  CAS  PubMed  Google Scholar 

  47. Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284: 31052–31061. https://doi.org/10.1074/jbc.M109.052969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73: 400–409. https://doi.org/10.1002/jnr.10655

    Article  CAS  PubMed  Google Scholar 

  49. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27: 447–452. https://doi.org/10.1016/j.tins.2004.05.013

    Article  CAS  PubMed  Google Scholar 

  50. Alekseeva OS, Gusel’nikova VV, Beznin GV, Korzhevskii DE (2015) Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates. J Evol Biochem Physiol 51: 357–369. https://doi.org/10.1134/S0022093015050014

    Article  CAS  Google Scholar 

  51. Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S (2009) Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci USA 106: 13588–13593. https://doi.org/10.1073/pnas.0906809106

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Develop 4: 42. https://doi.org/10.1186/1749-8104-4-42

    Article  CAS  Google Scholar 

  53. Veshchitskii AA, Kirik OV, Korzhevskii DE, Merkulyeva N (2023) Development of neurochemical labeling in the intermediolateral nucleus of cats’ spinal cord. Anat Rec 306: 2400–2410. https://doi.org/10.1002/ar.24943

    Article  CAS  Google Scholar 

  54. Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000) Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res 861: 45–58. https://doi.org/10.1016/s0006-8993(00)01954-5

    Article  CAS  PubMed  Google Scholar 

  55. Liau ES, Jin S, Chen Y-C, Liu W-S, Calon M, Nedelec S, Nie Q, Chen J-A (2023) Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons. Nat Commun 14: 46. https://doi.org/10.1038/s41467-022-35574-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Balbi P, Martinoia S, Massobrio P (2015) Axon-somatic back-propagation in detailed models of spinal alpha motoneurons. Front Comput Neurosci 9: 15. https://doi.org/10.3389/fncom.2015.00015

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76

    Article  CAS  PubMed  Google Scholar 

  58. Fedirchuk B, Stecina K, Kristensen KK, Zhang M, Meehan CF, Bennett DJ, Hultborn H (2013) Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions. J Neurophysiol 109: 375–388. https://doi.org/10.1152/jn.00649.2012

    Article  PubMed  Google Scholar 

  59. Jankowska E, Hammar I (2013) Interactions between spinal interneurons and ventral spinocerebellar tract neurons. J Physiol 591: 5445–5451. https://doi.org/10.1113/jphysiol.2012.248740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chalif JI, Martínez-Silva M de L, Pagiazitis JG, Murray AJ, Mentis GZ (2022) Control of mammalian locomotion by ventral spinocerebellar tract neurons. Cell 185: 328–344. e26. https://doi.org/10.1016/j.cell.2021.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to P.E. Musienko for the assistance in working with a part of animals.

Funding

This study was supported by the Russian Science Foundation (project No. 21-15-00235).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design (N.S.M.), histological preparations (A.A.V., P.Yu.Sh., N.I.N., N.V.P.), data collection and processing (N.S.M., A.A.V., P.Yu.Sh., N.V.P.), writing and editing the manuscript (N.S.M., A.A.V., P.Yu.Sh., N.V.P.).

Corresponding author

Correspondence to N. S. Merkulyeva.

Ethics declarations

ETHICS APPROVAL

The work was carried out in compliance with the requirements of the European Communities Council Directive 1986 on the protection of animals used for experimental and other scientific purposes, as stated in the Guide for the Care and Use of Laboratory Animals (2010). Experimental protocols were approved by the Ethics Committee of Pavlov Institute of Physiology of the Russian Academy of Sciences (Meeting minutes dated 09/11/2015).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 6, pp. 522–531https://doi.org/10.31857/S0044452923060098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veshchitskii, A.A., Pavlova, N.V., Shkorbatova, P.Y. et al. NeuN Expression in Spinal Neurons Projecting to the Cerebellum. J Evol Biochem Phys 59, 1974–1985 (2023). https://doi.org/10.1134/S0022093023060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060078

Keywords:

Navigation