Skip to main content
Log in

Age-Related Effect of Cholecystokinin on Impulse Activity of Neurons in the Rat Hypothalamic Dorsomedial and Ventromedial Nuclei

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The aim of this work was to analyze background impulse activity, as well as the firing evoked by the intravenous administration of a sulfated cholecystokinin (CCK) octapeptide and its antagonist proglumide, in neurons of the hypothalamic dorsomedial (DMN) and ventromedial (VMN) nuclei in urethane-anesthetized young (2–3 months), adult (12 months), and aged (24 months) male Wistar rats. The mean background firing rate in young rats significantly decreased after CCK administration from 1.5 ± 0.4 to 0.2 ± 0.1 spikes/s in the DMN and from 2.0 ± 0.4 to 0.9 ± 0.2 spikes/s in the VMN. CCK and proglumide co-administration evoked no changes in firing patterns in this age group. In adult and aged rats, the mean background firing rate in DMN and VMN neurons was lower compared to young rats, and did not change significantly in response to CCK and proglumide exposure. In the DMN and VMN, most neurons were inhibited by CCK, while in the DMN, the percentage of CCK-inhibited neurons was higher compared to the VMN. In young animals, the DMN lacked CCK-activated neurons that were observed in adult and aged animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Ambler M, Hitrec T, Wilson A, Cerri M, Pickering A (2022) Neurons in the Dorsomedial Hypothalamus Promote, Prolong, and Deepen Torpor in the Mouse. J Neurosci 42: 4267–4277. https://doi.org/10.1523/JNEUROSCI.2102-21.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci USA 103: 12150–121505. https://doi.org/10.1073/pnas.0604189103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Northeast RC, Vyazovskiy VV, Bechtold DA (2020) Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol 15: 183–191. https://doi.org/10.1016/j.cophys.2020.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Gawron E, Klich JD, Pradel K, Lewandowski MH (2022) High-Fat-Diet-Evoked Disruption of the Rat Dorsomedial Hypothalamic Clock Can Be Prevented by Restricted Nighttime Feeding. Nutrients 14: 5034. https://doi.org/10.3390/nu14235034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sayegh AI (2013) The role of cholecystokinin receptors in the short-term control of food intake. Prog Mol Biol Transl Sci 114: 277–316. https://doi.org/10.1016/B978-0-12-386933-3.00008-X

    Article  CAS  PubMed  Google Scholar 

  6. Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W (2022) The physiological control of eating: signals, neurons, and networks. Physiol Rev 102: 689–813. https://doi.org/10.1152/physrev.00028.2020

    Article  CAS  PubMed  Google Scholar 

  7. Crosby KM, Baimoukhametova DV, Bains JS, Pittman QJ (2015) Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release. J Neurosci 35: 13160–13170. https://doi.org/10.1523/JNEUROSCI.3123-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sabatier N, Leng G (2010) Responses to cholecystokinin in the ventromedial nucleus of the rat hypothalamus in vivo. Eur J Neurosci 31: 1127–1135. https://doi.org/10.1111/j.1460-9568.2010.07144.x

    Article  PubMed  Google Scholar 

  9. Heidel E, Davidowa H (1998) Interactive effects of cholecystokinin-8S and serotonin on spontaneously active neurons in ventromedial hypothalamic slices. Neuropeptides 32(5): 423–429. https://doi.org/10.1016/s0143-4179(98)90066-x

    Article  CAS  PubMed  Google Scholar 

  10. Moiseev KY, Vishnyakova PA, Porseva VV, Masliukov AP, Spirichev AA, Emanuilov AI, Masliukov PM (2020) Changes of nNOS expression in the tuberal hypothalamic nuclei during ageing. Nitric Oxide 100–101: 1–6. https://doi.org/10.1016/j.niox.2020.04.002

    Article  CAS  Google Scholar 

  11. Masliukov PM, Nozdrachev AD (2021) Hypothalamic Regulatory Mechanisms of Aging. J Evol Biochem Phys 57: 473–491. https://doi.org/10.1134/S0022093021030030

    Article  CAS  Google Scholar 

  12. Moiseev KY, Spirichev AA, Vishnyakova PA, Pankrasheva LG, Masliukov PM (2021) Changes of discharge properties of neurons from dorsomedial hypothalamic nuclei during aging in rats. Neurosci Lett 762: 136168. https://doi.org/10.1016/j.neulet.2021.136168

    Article  CAS  PubMed  Google Scholar 

  13. Moiseev KY, Spirichev AA, Pankrasheva LG, Martyusheva AS, Abramova AY, Maslyukov PM (2021) Spike Activity in the Ventromedial Nucleus of Rat Hypothalamus during Aging. Bull Exp Biol Med 171: 251–253. https://doi.org/10.1007/s10517-021-05205-4

    Article  CAS  PubMed  Google Scholar 

  14. Anisimov VN (2008) Molecular and physiological mechanisms of aging; In 2 v. Nauka, SPb. (In Russ).

    Google Scholar 

  15. Carrascosa JM, Ros M, Andrés A, Fernández-Agulló T, Arribas C (2009) Changes in the neuroendocrine control of energy homeostasis by adiposity signals during aging. Exp Gerontol 44: 20–25. https://doi.org/10.1016/j.exger.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  16. Cawthon CR, de La Serre CB (2021) The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 138: 170492. https://doi.org/10.1016/j.peptides.2020.170492

    Article  CAS  PubMed  Google Scholar 

  17. Paxinos G, Watson C (2017) The Rat Brain in Stereotaxic Coordinates, compact 7th ed. Elsevier; Acad Press.

    Google Scholar 

  18. Kendrick K, Leng G, Higuchi T (1991) Noradrenaline, dopamine and serotonin release in the paraventricular and supraoptic nuclei of the rat in response to intravenous cholecystokinin injections. J Neuroendocrinol 3(2): 139–144. https://doi.org/10.1111/j.1365-2826.1991.tb00255.x

    Article  CAS  PubMed  Google Scholar 

  19. Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W (2022) The physiological control of eating: signals, neurons, and networks. Physiol Rev 102(2): 689–813. https://doi.org/10.1152/physrev.00028.2020

    Article  CAS  PubMed  Google Scholar 

  20. Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, Kato KX, Yamasaki T, Xu S, Ishimoto T, Yamagata S, Otsuguro KI, Horiuchi M, Iijima N, Kimura K, Toda C (2021) Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 54: 101366. https://doi.org/10.1016/j.molmet.2021.101366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dodd GT, Worth AA, Nunn N, Korpal AK, Bechtold DA, Allison MB, Myers MG Jr, Statnick MA, Luckman SM (2014) The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab 20: 639–649. https://doi.org/10.1016/j.cmet.2014.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blevins JE, Morton GJ, Williams DL, Caldwell DW, Bastian LS, Wisse BE, Schwartz MW, Baskin DG (2009) Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol 296: R476–R484. https://doi.org/10.1152/ajpregu.90544.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Scott KA, Zhao Z, Moran TH, Bi S (2008) Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience 152(1): 178–188. https://doi.org/10.1016/j.neuroscience.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  24. Noetzel S, Stengel A, Inhoff T, Goebel M, Wisser AS, Bannert N, Wiedenmann B, Klapp BF, Taché Y, Mönnikes H, Kobelt P (2009) CCK-8S activates c-Fos in a dose-dependent manner in nesfatin-1 immunoreactive neurons in the paraventricular nucleus of the hypothalamus and in the nucleus of the solitary tract of the brainstem. Regul Pept 157(1–3): 84–91. https://doi.org/10.1016/j.regpep.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  25. Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17(9): 1240–1248. https://doi.org/10.1038/nn.3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, Garcia AP, Land BB, Lowell BB, Dileone RJ, Heisler LK (2016) Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife 5: e12225. https://doi.org/10.7554/elife.12225

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berthélemy P, Bouisson M, Vellas B, Moreau J, Nicole-Vaysse A, Albarede JL, Ribet A (1992) Postprandial cholecystokinin secretion in elderly with protein-energy undernutrition. J Am Geriatr Soc 40: 365–369. https://doi.org/10.1111/j.1532-5415.1992.tb02136.x

    Article  PubMed  Google Scholar 

  28. Covasa M (2010) Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 299: R1423–R1439. https://doi.org/10.1152/ajpregu.00126.2010

    Article  CAS  PubMed  Google Scholar 

  29. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71: 142–154. https://doi.org/10.1016/j.neuron.2011.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto R, Ahmed N, Ito T, Gungor NZ, Pare D (2018) Optogenetic Study of Anterior BNST and Basomedial Amygdala Projections to the Ventromedial Hypothalamus. eNeuro 5: 204–218. https://doi.org/10.1523/ENEURO.0204-18.2018

    Article  Google Scholar 

  31. Xiao Z, Jaiswal MK, Deng PY, Matsui T, Shin HS, Porter JE, Lei S (2012) Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 22: 1438–1450. https://doi.org/10.1002/hipo.20984

    Article  CAS  PubMed  Google Scholar 

  32. Moore SJ, Cazares VA, Temme SJ, Murphy GG (2023) Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, CaV 1.3. Aging Cell 22: e13781. https://doi.org/10.1111/acel.13781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sahu G, Turner RW (2021) The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 12: 759707. https://doi.org/10.3389/fphys.2021.759707

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sa M, Park MG, Lee CJ (2022) Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity. Mol Cells 45: 65–75. https://doi.org/10.14348/molcells.2022.2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rust VA, Crosby KM (2021) Cholecystokinin acts in the dorsomedial hypothalamus of young male rats to suppress appetite in a nitric oxide-dependent manner. Neurosci Lett 764: 136295. https://doi.org/10.1016/j.neulet.2021.136295

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 19-15-00039).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design—P.M.M., data collection—A.A.S., K.Yu.M., P.A.A., data processing—A.A.S., K.Yu.M., P.A.A., G.A.T., P.M.M., writing and editing the manuscript—P.M.M.

Corresponding author

Correspondence to P. M. Masliukov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional principles of animal care and use were observed. All experimental procedures performed with the involvement of animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Ethics Committee at Yaroslavl State Medical University (Meeting minutes No. 60 of 16.02.2023).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 8, pp. 1056–1067https://doi.org/10.31857/S0869813923080101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirichev, A.A., Moiseev, K.Y., Anfimova, P.A. et al. Age-Related Effect of Cholecystokinin on Impulse Activity of Neurons in the Rat Hypothalamic Dorsomedial and Ventromedial Nuclei. J Evol Biochem Phys 59, 1382–1391 (2023). https://doi.org/10.1134/S0022093023040294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040294

Keywords:

Navigation