Skip to main content
Log in

Reaction of Rat Renal Medullary Laminin to Prolonged Dehydration

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Laminins are the major water-soluble glycoproteins in the basement membrane of epithelial tissue. The laminin content of the renal parenchyma was studied in rats that were fed a 60-h alternative water diet with either excessive water intake or a complete lack of drinking water. It was shown that osmotic concentration of the urine, which develops due to water deprivation, is accompanied by a quantitative change in the laminin composition. It was found that the level of the laminin β chain increases in the renal medulla, but not in the renal cortex, of dehydrated rats. This effect occurs only in WAG rats with a normally expressed vasopressin gene and is absent in mutant Brattleboro rats unable to synthesize this hormone. Based on the initial and new data, it is assumed that laminin, as a key regulatory element in the basement membrane of the tubular epithelium, is involved in the adaptive response of the renal urine concentrating system to prolonged dehydration. Hyperhydration does not affect laminin levels in the renal parenchyma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Yurchenco PD, Cheng YS (1993) Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. J Biol Chem 268(23): 17286–17299. https://doi.org/10.1016/S0021-9258(19)85334-6

    Article  CAS  PubMed  Google Scholar 

  2. Mak Ki M, Rena M (2017) Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease. The Anatom Record 300(8): 1371–1390. https://doi.org/10.1002/ar.23567

    Article  CAS  Google Scholar 

  3. Yamada M, Sekiguchi K (2015) Molecular Basis of Laminin-Integrin Interactions. Curr Top Membr 76: 197–229. https://doi.org/10.1016/bs.ctm.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JCR, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Manuel M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24(5): 326–332. https://doi.org/10.1016/j.matbio.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  5. Walter V, DeGraff DJ, Yamashita H (2022) Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer. Am J Clin Exp Urol 10(5): 311–319. eCollection 2022.

    PubMed  PubMed Central  Google Scholar 

  6. Aumailley M (2013) The laminin family. Cell AdhMigr 7(1): 48–55. https://doi.org/10.4161/cam.22826

    Article  Google Scholar 

  7. Rousselle P, Beck K (2013) Laminin 332 processing impacts cellular behavior. Cell Adh Migr 7(1): 122–134. https://doi.org/10.4161/cam.23132

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khegay II, Ivanova LN (2015) Regression of Walker 256 carcinosarcoma in vasopressin-deficient Brattleboro rats is accompanied by a changed laminin pattern. Biochem Genet 53(1–3): 1–7. https://doi.org/10.1007/s10528-015-9665-1

    Article  CAS  PubMed  Google Scholar 

  9. Bekkevold CM, Robertson KL, Reinhard MK, Battles AH, Neil E, Rowland NE (2013) Dehydration Parameters and Standards for Laboratory Mice. J Am Assoc Lab Anim Sci 52(3): 233–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smit WM, Ruyter JH, van Wijk HF (1960) A new cryoscopic micro-method for the determination of molecular weights. Analyt Chim Acta 22: 8–16. https://doi.org/10.1016/S0003-2670(00)88232-X

    Article  CAS  Google Scholar 

  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki T, Takagi J, Giudici C, Yamada Y, Arikawa-Hirasawa E, Deutzmann R, Timpl R, Sonnenberg A, Bächinger HP, Tonge D (2010) Laminin-121—recombinant expression and interactions with integrins. Matrix Biol 29(6): 484–493. https://doi.org/10.1016/j.matbio.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M (2005) Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. J Bio lChem 280(1): 88–93. https://doi.org/10.1074/jbc.M411824200

    Article  CAS  Google Scholar 

  14. Smirnov AV, Natochin YuV (2019) Nephrology: fundamental and clinical. Nephrology (Saint-Petersburg) 23 (4): 9–26. https://doi.org/10.24884/1561-6274-2019-23-4-9-26

  15. Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304(3): 905–912. https://doi.org/10.1124/jpet.102.035022

    Article  CAS  PubMed  Google Scholar 

  16. Givant-Horwitz V, Davidson B, Reich R (2005) Laminin-induced signaling in tumor cells. Cancer Lett 223(1): 1–10. https://doi.org/10.1016/j.canlet.2004.08.030

    Article  CAS  PubMed  Google Scholar 

  17. Phan H-P, Sugino M, Niimi T (2009) The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expres Purificat 68(1): 79–84. https://doi.org/10.1016/j.pep.2009.07.005

    Article  CAS  Google Scholar 

  18. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218(2): 213–234. https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  19. Wade CE, Keil LC, Ramsay DJ (1983) Role of Volume and Osmolality in the Control of Plasma Vasopressin in Dehydrated Dogs. Neuroendocrinology 37(5): 349–353. https://doi.org/10.1159/000123574

    Article  CAS  PubMed  Google Scholar 

  20. Bouby N, Fernandes S (2003) Mild dehydration, vasopressin and the kidney: animal and human studies Eur J Clin Nutr 57(Suppl 2): S39–S46. https://doi.org/10.1038/sj.ejcn.1601900

  21. Bankir L, Bouby N, Ritz E (2013) Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol 9(4): 223–239. https://doi.org/10.1038/nrneph.2013.22

    Article  CAS  PubMed  Google Scholar 

  22. Phillips PA, Abrahams JM, Kelly JM, Mooser V, Trinder D, Johnston CI(1990)Localization of vasopressin binding sites in rat tissues using specific V1 and V2 selective ligands. Endocrinology 126(3): 1478–1484. https://doi.org/10.1210/endo-126-3-1478

    Article  CAS  PubMed  Google Scholar 

  23. Holmes CL, Landry DW, Granton JT (2003) Science review: Vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care 7(6): 427–434. https://doi.org/10.1186/cc2337

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaufmann JE, Oksche A, Wollheim CB, Gunther G, Rosenthal W, Vischer UM (2000) Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 106(1): 107–116. https://doi.org/10.1172/JCI9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, Holmes CL, Hébert PC, Cooper DJ, Mehta S, Granton JT, Cook DJ, Jeffrey J Presneill JJ (2010) The effects of vasopressin on acute kidney injury in septic shock. Intens Care Med 36(1): 83–91. https://doi.org/10.1007/s00134-009-1687-x

    Article  CAS  Google Scholar 

Download references

Funding

The work was implemented within the framework of the budget project No. FWNR-2022-0021 (Gene funds of the population of Siberia, genetic markers of human diseases and the molecular basis for the formation of pathological processes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Khegay.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international and national guidelines for the care and use of animals were observed. All experimental procedures involving animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration and the recommendations of the Bioethics Committee at Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (meeting minutes No. 98/1 of 05.11.2021).

CONFLICT OF INTEREST

The author declares that he has no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 7, pp. 946–953https://doi.org/10.31857/S0869813923070051.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khegay, I.I. Reaction of Rat Renal Medullary Laminin to Prolonged Dehydration. J Evol Biochem Phys 59, 1297–1302 (2023). https://doi.org/10.1134/S0022093023040221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040221

Keywords:

Navigation