Skip to main content
Log in

Genome Instability of Hippocampal and Bone Marrow Cells in Male Mice Exposed to Immobilization and Female Pheromone Stressor

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Different stressors, while affecting the cells of target organs, can lead to genome instability and even disintegration, which can matter in the formation of post-stress disorders. We studied the effect of psycho-emotional stressors (immobilization and the house mouse female pheromone 2,5-dimethylpyrazine) on DNA integrity of hippocampal and bone marrow cells in CD-1, CBA and C3H male mice, using the cytogenetic and immunocytochemical methods (alkaline comet assay, ana-telophase test for mitotic disturbances, γH2AX focus assay). It was shown that both immobilization and 2,5-dimethylpyrazine cause genome damage in the cells of both organs studied. Cell genome destabilization in various organs is considered as an essential stage of stress response development in an attempt of the organism to adapt to extreme environmental exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Anand KS, Dhikav V (2012) Hippocampus in health and disease: An overview. Ann Indian Acad Neurol 15: 239–246. https://doi.org/10.4103/0972-2327.104323

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goldfarb EV, Rosenberg MD, Seo D, Constable RT, Sinha R (2020) Hippocampal seed connectome-based modeling predicts the feeling of stress. Nat Commun 11: 2650. https://doi.org/10.1038/s41467-020-16492-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Youssef MM, Hamada HT, Lai ESK, Kiyama Y, El-Tabbal M, Kiyonari H, Nakano K, Kuhn B, Yamamoto T (2022) TOB is an effector of the hippocampus-mediated acute stress response. Transl Psychiatry 12: 302. https://doi.org/10.1038/s41398-022-02078-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Love J, Zelikowsky M (2020) Stress Varies Along the Social Density Continuum. Front Syst Neurosci 14: 582985. https://doi.org/10.3389/fnsys.2020.582985.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conrad CD, Magariños AM, LeDoux JE, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113: 902–913. https://doi.org/10.1037/0735-7044.113.5.902

    Article  CAS  PubMed  Google Scholar 

  6. Ortiz JB, Conrad CD (2018) The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Front Neuroendocrinol 49: 114–123. https://doi.org/10.1016/j.yfrne.2018.02.005

    Article  PubMed  Google Scholar 

  7. Levone BR, Cryan JF, O’Leary OF (2015) Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress 1: 147–155. https://doi.org/10.1016/j.ynstr.2014.11.003

    Article  PubMed  Google Scholar 

  8. Poller WC, Downey J, Mooslechner AA, Khan N, Li L, Chan CT, McAlpine CS, Xu C, Kahles F, He S, Janssen H, Mindur JE, Singh S, Kiss MG, Alonso-Herranz L, Iwamoto Y, Kohler RH, Wong LP, Chetal K, Russo SJ, Sadreyev RI, Weissleder R, Nahrendorf M, Frenette PS, Divangahi M, Swirski FK (2022) Brain motor and fear circuits regulate leukocytes during acute stress. Nature 607: 578–584. https://doi.org/10.1038/s41586-022-04890-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rentscher KE, Carroll JE, Polsky LR, Lamkin DM (2022) Chronic stress increases transcriptomic indicators of biological aging in mouse bone marrow leukocytes. BBI—Health 22: 100461. https://doi.org/10.1016/j.bbih.2022.100461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duric V, Clayton S, Leong ML, Yuan LL (2016) Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast 2016: 5460732. https://doi.org/10.1155/2016/5460732. Epub 2016 Feb 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novotny MV, Ma W, Zidek L, Daev E (1999) Recent Biochemical Insights into Puberty Acceleration, Estrus Induction, and Puberty Delay in the House Mouse. In: Johnston RE, Müller-Schwarze D, Sorensen PW (eds) Advances in Chemical Signals in Vertebrates. Springer, Boston-MA. https://doi.org/10.1007/978-1-4615-4733-4_7

    Chapter  Google Scholar 

  12. Koyama S (2004) Primer effects by conspecific odors in house mice: a new perspective in the study of primer effects on reproductive activities. Hormones and Behavior 46: 303–310. https://doi.org/10.1016/j.yhbeh.2004.03.002

    Article  PubMed  Google Scholar 

  13. Daev EV (2011) Genetic effects of olfactory stress: house mouse studies. Lambert Acad Publ, Germany-Saarbrucken. (In Russ).

    Google Scholar 

  14. Shcherbinina VD, Petrova MV, Glinin TS, Daev EV (2021) Genotoxic effect of restraint and stress pheromone on somatic and germ cells of mouse males Mus musculus L. Ecol Genetics 19: 169–179. https://doi.org/10.17816/ecogen65208

    Article  Google Scholar 

  15. Higashimoto M, Isoyama N, Ishibashi S, Ogawa N, Takiguchi M, Suzuki S, Ohnishi Y, Sato M (2013) Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress. J Med Invest 60: 240–248. https://doi.org/10.2152/jmi.60.240

    Article  PubMed  Google Scholar 

  16. Durnev AD, Zhanataev AK, Anisina EA, Sidneva ES, Nikitina VA, Oganesyants LA, Seredin SB, Bekish VYa, Chernukha IM (2006) Application of alkaline gel electrophoresis of isolated cells to assess the genotoxic properties of natural and synthetic compounds: Guidelines. Moscow. (In Russ).

    Google Scholar 

  17. Dhawan A, Bajpayee M (eds) (2019) Genotoxicity Assessment: Methods and Protocols MIMB 2031. https://doi.org/10.1007/978-1-4939-9646-9

    Book  Google Scholar 

  18. Glynin TS (2018) Pathways of stabilization and destabilization of bone marrow cell genome under olfactory chemosignals action in mice. PhD thesis in Biology, SPBU, Saint-Petersubrg. (In Russ).

    Google Scholar 

  19. Sannino G, Pasqualini L, Ricciardelli E, Montilla P, Soverchia L, Ruggeri B, Falcinelli S, Renzi A, Ludka C, Kirchner T, Grünewald TG, Ciccocioppo R, Ubaldi M, Hardiman G (2016) Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model. Oncotarget 7: 8455–8465. https://doi.org/ 10.18632/oncotarget.7225

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ubaldi M, Ricciardelli E, Pasqualini L, Sannino G, Soverchia L, Ruggeri B, Falcinelli S, Renzi A, Ludka C, Ciccocioppo R, Hardiman G (2015) Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics 16: 471–482. https://doi.org/10.2217/pgs.15.3

    Article  CAS  PubMed  Google Scholar 

  21. Tomczak A, Mortensen JM, Winnenburg R, Liu C, Alessi DT, Swamy V, Vallania F, Lofgren S, Haynes W, Shah NH, Musen MA, Khatri P (2018) Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations. Sci Rep 8: 5115. https://doi.org/10.1038/s41598-018-23395-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016) Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5: e14997. https://doi.org/10.7554/eLife.14997

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103: 17501–17506. https://doi.org/10.1073/pnas.0607207103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leuner B, Gould E (2010) Structural Plasticity and Hippocampal Function. Annu Rev Psychol 61: 111–140. https://doi.org/10.1146/annurev.psych.093008.100359

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hunter RG, Seligsohn M, Rubin TG, Griffiths BB, Ozdemir Y, Pfaff DW, Datson NA, McEwen BS (2016) Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci USA 113: 9099–9104. https://doi.org/10.1073/pnas.1602185113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Picard M, McEwen BS (2018) Psychological Stress and Mitochondria: A Systematic Review. Psychosom Med 80: 141–153. https://doi.org/10.1097/PSY.0000000000000545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malvandi AM, Haddad F, Moghimi A (2010) Acute restraint stress increases the frequency of vinblastine-induced micronuclei in mouse bone marrow cells. Stress 13: 276–280. https://doi.org/10.3109/10253890903296710

    Article  CAS  PubMed  Google Scholar 

  28. Newman AEM, Edmunds NB, Ferraro S, Heffell Q, Merritt GM, Pakkala JJ, Schilling CR, Schorno S (2015). Using ecology to inform physiology studies: implications of high population density in the laboratory. Am J Physiol Regul Integr Comp Physiol 308: R449–R454. https://doi.org/10.1152/ajpregu.00328.2014

    Article  CAS  PubMed  Google Scholar 

  29. Bronson FH (1979) The reproductive ecology of the house mouse. Q Rev Biol 54: 265–299. https://doi.org/10.1086/411295

    Article  CAS  PubMed  Google Scholar 

  30. Wilhelm T, Said M, Naim V (2020) DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 11: 642. https://doi.org/10.3390/genes11060642

  31. Maldung A, Comai L (2004) The Effect of Stress on Genome Regulation and Structure. Ann Bot 94: 481–495. https://doi.org/10.1093/aob/mch172

    Article  CAS  Google Scholar 

  32. Dumoulin O (2021) The Role of Stress in the Spread of Transposable Elements. MSURJ 16: 67–73. https://doi.org/10.26443/msurj.v16i1.63

    Article  Google Scholar 

  33. Kaidanov LZ (1981) On the adaptive value of the rate of the mutation process. Res Genet 9: 105–112. http://hdl.handle.net/11701/9164

    Google Scholar 

  34. Hoffmann AA, Hercus MJ (2000) Environmental Stress as an Evolutionary Force. BioScience 50: 217–226. https://doi.org/10.1641/0006-3568(2000)050[0217:esaaef]2.3.co;2

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Bondarenko and other students and associates of the Genetics and Biotechnology Chair of St. Petersburg State University for their assistance in conducting experiments and involvement is the discussion of the results obtained.

Funding

The work was supported by the Russian Foundation for Basic Research (RFBR) grant no. 16-04-00678.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (E.V.D.), data collection (V.D.Sh., B.V.B., T.S.G.), data processing and analysis (V.D.Sh., B.V.B.), writing and editing the manuscript (E.V.D., V.D.Sh.).

Corresponding author

Correspondence to E. V. Daev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional guidelines for the care and use of animals have been followed. All experimental procedures with the involvement of animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration and the recommendations of the St. Petersburg University Ethics Committee for working with laboratory animals (conclusion No. 131-03-1 dated 06/01/2017).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 7, pp. 844–861https://doi.org/10.31857/S0869813923070129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinina, V.D., Bakulevskiy, B.V., Glinin, T.S. et al. Genome Instability of Hippocampal and Bone Marrow Cells in Male Mice Exposed to Immobilization and Female Pheromone Stressor. J Evol Biochem Phys 59, 1215–1228 (2023). https://doi.org/10.1134/S0022093023040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040154

Keywords:

Navigation