Skip to main content
Log in

Mesenchymal Stem Cells Carrying IFN-α and IFN-β Overexpression Genes Inhibit Non-Small Cell Lung Cancer via the JAK/STAT Pathway

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

IFN-α and IFN-β have been reported to have antitumor effects. This study explored the effect and molecular mechanism of IFN-α/IFN-β overexpressing mesenchymal stem cells (MSCs) in treatment of non-small cell lung cancer. Stable human umbilical cord-derived mesenchymal stem cells (hUCMSCs) overexpressing IFN-α and IFN-β (OE-MSCs) were obtained by lentiviral transfection. We first investigated the affinity of OE-MSCs for tumors, and then explored the effects of OE-MSCs on the viability and apoptosis of A549 and NCI-H2347 lung cancer cells. Next, in vivo experiments were performed in which OE-MSCs were injected into the tail veins of mice in a lung cancer tumor-bearing mouse model; after which, gene expression was detected by qRT-PCR, western blotting, and immunohistochemistry. Our results showed that the MSCs had stronger chemotaxis towards cancer cells. Moreover, the OE-MSCs produced and secreted IFN-α and IFN-β into the extracellular environment, and thereby reduced cancer cell viability and induced apoptosis. Knockdown of IFNAR1, the receptor for IFN-α and IFN-β, reduced the amount of damage done by OE-MSCs to lung cancer cells, and also inhibited the JAK/STAT pathway in lung cancer cells. Inhibition of JAK1 produced an effect similar to that of IFNAR1 knockdown. The antitumor effect of OE-MSCs was also confirmed by in vivo experiments, in which the weights and volumes of tumors in mice injected with OE-MSCs were significantly reduced. In conclusion, MSCs carrying IFN-α and IFN-β overexpression genes inhibited non-small cell lung cancer via the JAK/STAT pathway both in vivo and in vitro. Our results provide a theoretical basis for using stem cell therapy in treatment of non-small cell lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Cruz CSD, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32: 605–644. https://doi.org/10.1016/j.ccm.2011.09.001

    Article  Google Scholar 

  2. Mignogna M, Fedele S, Russo LL (2004) The World Cancer Report and the burden of oral cancer. Eur J Cancer PRrev 13: 139–142. https://doi.org/10.1097/00008469-200404000-00008

    Article  CAS  Google Scholar 

  3. Naruke T, Goya T, Tsuchiya R, Suemasu K (1988) Prognosis and survival in resected lung carcinoma based on the new international staging system. J Thorac Cardiovasc Surg 96: 440–447.

    Article  CAS  PubMed  Google Scholar 

  4. Tsujimura M, Kusamori K, Katsumi H, Sakane T, Yamamoto A, Nishikawa M (2019) Cell-based interferon gene therapy using proliferation-controllable, interferon-releasing mesenchymal stem cells. Sci Rep 9: 18869. https://doi.org/10.1038/s41598-019-55269-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koc O, Lazarus H (2001) Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 27: 235–239. https://doi.org/10.1038/sj.bmt.1702791

    Article  CAS  PubMed  Google Scholar 

  6. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54: 1418–1437. https://doi.org/10.1111/trf.12421

    Article  CAS  PubMed  Google Scholar 

  7. Wei W, Huang Y, Li D, Gou H-F, Wang W (2018) Improved therapeutic potential of MSCs by genetic modification. Gene Ther 25: 538–547. https://doi.org/10.1038/s41434-018-0041-8

    Article  CAS  PubMed  Google Scholar 

  8. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659. https://doi.org/10.1056/NEJM198612253152606

    Article  CAS  PubMed  Google Scholar 

  9. Alagesan S, Griffin MD (2014) Autologous and allogeneic mesenchymal stem cells in organ transplantation: what do we know about their safety and efficacy? Curr Opin Organ Transplant 19: 65–72. https://doi.org/10.1097/MOT.0000000000000043

    Article  CAS  PubMed  Google Scholar 

  10. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and Distinct Functions of Type I and Type III Interferons. Immunity 50: 907–923. https://doi.org/10.1016/j.immuni.2019.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15: 405-414. https://doi.org/10.1038/nri3845

    Article  CAS  PubMed  Google Scholar 

  12. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6: 836–848. https://doi.org/10.1038/nri1961

    Article  CAS  PubMed  Google Scholar 

  13. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16: 131–144. https://doi.org/10.1038/nrc.2016.14

    Article  CAS  PubMed  Google Scholar 

  14. Stiff A, Carson W III (2015) Investigations of interferon-lambda for the treatment of cancer. J Innate Immun 7: 243–250. https://doi.org/10.1159/000370113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van der Jeught K, Joe PT, Bialkowski L, Heirman C, Daszkiewicz L, Liechtenstein T, Escors D, Thielemans K, Breckpot K (2014) Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5: 10100. https://doi.org/10.18632/oncotarget.2463

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, Ponnazhagan S (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther 15: 1446–1453. https://doi.org/10.1038/gt.2008.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 32: 8–15. https://doi.org/10.1016/j.cellbi.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Chen X (2021) Autophagic tumor-associated macrophages promote the endothelial mesenchymal transition in lung adenocarcinomas through the FUT4/p-ezrin pathway. J Thorac Dis 13: 5973–5985. https://doi.org/10.21037/jtd-21-1519

    Article  PubMed  PubMed Central  Google Scholar 

  19. She J, Yang P, Hong Q, Bai C (2013) Lung cancer in China: challenges and interventions. Chest 143: 1117–1126. https://doi.org/10.1378/chest.11-2948

    Article  PubMed  Google Scholar 

  20. Hakkarainen T, Särkioja M, Lehenkari P, Miettinen S, Ylikomi T, Suuronen R, Desmond RA, Kanerva A, Hemminki A (2007) Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther 18: 627–641. https://doi.org/10.1089/hum.2007.034

    Article  CAS  PubMed  Google Scholar 

  21. Tang C, Russell PJ, Martiniello-Wilks RJ, Rasko JE, Khatri A (2010) Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 28: 1686–1702. https://doi.org/10.1002/stem.473

    Article  CAS  PubMed  Google Scholar 

  22. Baxter-Holland M, Dass CR (2018) Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. J Pharm Pharmacol 70: 320–327. https://doi.org/10.1111/jphp.12869

    Article  CAS  PubMed  Google Scholar 

  23. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17: 2619–2627. https://doi.org/10.1158/1078-0432.CCR-10-1114

    Article  CAS  PubMed  Google Scholar 

  24. Tayal V, Kalra BS (2008) Cytokines and anti-cytokines as therapeutics—An update. Eur J Pharmacol 579: 1–12. https://doi.org/10.1016/j.ejphar.2007.10.049

    Article  CAS  PubMed  Google Scholar 

  25. Catani JPP, Medrano RF, Hunger A, Del Valle P, Adjemian S, Zanatta DB, Kroemer G, Costanzi-Strauss E, Strauss BE (2016) Intratumoral immunization by p19Arf and interferon-β gene transfer in a heterotopic mouse model of lung carcinoma. Transl Oncol 9: 565–574. https://doi.org/10.1016/j.tranon.2016.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kurzrock R, Rosenblum MG, Sherwin SA, Rios A, Talpaz M, Quesada JR, Gutterman JU (1985) Pharmacokinetics, single-dose tolerance, and biological activity of recombinant γ-interferon in cancer patients. Cancer Res 45: 2866–2872.

    CAS  PubMed  Google Scholar 

  27. De Weerd NA, Nguyen T (2012) The interferons and their receptors—distribution and regulation. Immunol Cell Biol 90: 483–491. https://doi.org/10.1038/icb.2012.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Darnell JE Jr (1998) Studies of IFN-induced transcriptional activation uncover the Jak-Stat pathway. J Interf Cytok Res 18: 549–554. https://doi.org/10.1089/jir.1998.18.549

    Article  CAS  Google Scholar 

  29. Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits ELJ, Lardon F, van Dam PA (2020) The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 60: 41–56. https://doi.org/10.1016/j.semcancer.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  30. Green DS, Husain SR, Johnson CL, Sato Y, Han J, Joshi B, Hewitt SM, Puri RK, Zoon KC (2019) Combination immunotherapy with IL-4 Pseudomonas exotoxin and IFN-alpha and IFN-gamma mediate antitumor effects in vitro and in a mouse model of human ovarian cancer. Immunotherapy 11: 483–496. https://doi.org/10.2217/imt-2018-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanceau J, Hiscott J, Delattre O, Wietzerbin J (2000) IFN-beta induces serine phosphorylation of Stat-1 in Ewing’s sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene 19: 3372–3383. https://doi.org/10.1038/sj.onc.1203670

    Article  CAS  PubMed  Google Scholar 

  32. Choi EA, Lei H, Maron DJ, Wilson JM, Barsoum J, Fraker DL, El-Deiry WS, Spitz FR (2003) Stat1-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand and the cell-surface death signaling pathway by interferon beta in human cancer cells. Cancer Res 63(17): 5299–5307.

    CAS  PubMed  Google Scholar 

  33. Zitzmann K, Brand S, De Toni EN, Baehs S, Goke B, Meinecke J, Spottl G, Meyer HH, Auernhammer CJ (2007) SOCS1 silencing enhances antitumor activity of type I IFNs by regulating apoptosis in neuroendocrine tumor cells. Cancer Res 67: 5025–5032. https://doi.org/10.1158/0008-5472.CAN-06-2575

    Article  CAS  PubMed  Google Scholar 

  34. Woznicki JA, Saini N, Flood P, Rajaram S, Lee CM, Stamou P, Skowyra A, Bustamante-Garrido M, Regazzoni K, Crawford N, McDade SS, Longley DB, Aza-Blanc P, Shanahan F, Zulquernain SA, McCarthy J, Melgar S, McRae BL, Nally K (2021) TNF-alpha synergises with IFN-gamma to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death Dis 12: 864. https://doi.org/10.1038/s41419-021-04151-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Zheng G, Zhao L, Xu F, Qian J (2015) Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-alpha-induced Jak/Stat1 pathway. J Cell Mol Med 19: 2432–2440. https://doi.org/10.1111/jcmm.12629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teijaro JR, Studer S, Leaf N, Kiosses WB, Nguyen N, Matsuki K, Negishi H, Taniguchi T, Oldstone MB, Rosen H (2016) S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-alpha autoamplification. Proc Natl Acad Sci USA 113: 1351–1356. https://doi.org/10.1073/pnas.1525356113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research is supported by Natural Science Research Project of Anhui Educational Committee (KJ2021A0776, 2022AH051526, KJ2019A0366), Guangzhou Science and technology planning project (2023A03J0491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangwu Wang.

Ethics declarations

Ethic statement

This research is approved by the Ethics Committee of Bengbu Medical College (No. 2022-251; No. 2022-154).

Conflict of interests

The authors declare that there is no relevant competing interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, K. Mesenchymal Stem Cells Carrying IFN-α and IFN-β Overexpression Genes Inhibit Non-Small Cell Lung Cancer via the JAK/STAT Pathway. J Evol Biochem Phys 59, 1136–1149 (2023). https://doi.org/10.1134/S0022093023040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040105

Keywords:

Navigation