Skip to main content
Log in

Calcium-Accumulating Ability of Rat Liver Mitochondria in Hypothermia of Various Duration

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Calcium is one of the most important intracellular messengers that regulate physiological and biochemical processes in the cell. Mitochondria are able to deposit calcium ions and involved in the regulation of calcium signaling. Hypothermic exposures in homeothermic animals can lead to a disruption of this important mitochondrial function and resulting pathological consequences. The aim of this study was to study the effects of moderate (30°C) hypothermia of varying duration on the calcium-accumulating ability of rat liver mitochondria. The experiments were carried out on male rats Wistar. Hypothermia was induced by external cooling of animals in a plexiglas chamber with a cold water jacket. Mitochondria were isolated from the liver of decapitated rats by differential centrifugation. The calcium-accumulating ability of mitochondria was assessed by the kinetics of calcium-induced mitochondrial swelling and their calcium retention capacity (CRC). It was found that during short-term (30-min) moderate (30°C) hypothermia, mitochondrial swelling rate decreases; hypothermia prolongation up to 1 h promotes a further decrease in the swelling rate, and up to 3 h causes its normalization. A positive correlation was found between the rate of mitochondrial calcium-induced swelling and CRC (r = 0.79). Thus, long-term cold exposure in rats activates a number of compensatory-adaptive responses. The decrease in the rate of mitochondrial calcium-induced swelling and CRC at the initial stages of hypothermia may be due to mitochondrial pore formation and is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Abbreviations

ROS:

reactive oxygen species

LPO:

lipid peroxidation

P/O ratio:

phosphate/oxygen ratio

MPTP:

mitochondrial permeability transition pore

OPM:

oxidative protein modification

VDAC:

voltage-dependent anion channel

ANT:

adenine nucleotide translocase

CypD:

cyclophilin D

PiC:

mitochondrial phosphate carrier

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

NAD:

reduced nicotinamide adenine dinucleotide

REFERENCES

  1. Vasington FD, Murphy JV (1962) Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation, J Biol Chem 237: 2670–2677. https://doi.org/10.1016/s0021-9258(19)73805-8

  2. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta Bioenergy 1787(11): 1309–1316. https://doi.org/10.1016/j.bbabio.2009.01.005

    Article  CAS  Google Scholar 

  3. Polderman KH (2009) Mechanisms of action, physiological effects, and compli-cations of hypothermia. Critical Care Medicine 37 (7): 186–202. https://doi.org/10.1097/CCM.0b013e3181aa5241

    Article  Google Scholar 

  4. Sun YJ, Zhang ZY, Fan B, Li G-Y (2019) Neuroprotection by Therapeutic Hypothermia. Front Neurosci 13: 1. https://doi.org/10.3389/fnins.2019.00586

    Article  Google Scholar 

  5. Paal P, Brugger H, Strapazzon G (2018) Accidental hypothermia. Handbook of Clinical Neurology 157: 547–563. https://doi.org/10.1016/b978-0-444-64074-1.00

    Article  PubMed  Google Scholar 

  6. Paal P, Pasquier M, Darocha T, et al. (2022) Accidental Hypothermia: 2021 Update. Int J Environ Res Public Heal 19: 501. https://doi.org/10.3390/ijerph19010501

  7. Søreide K (2014) Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury 45(4): 647–654. https://doi.org/10.1016/j.injury.2012.12.027

    Article  PubMed  Google Scholar 

  8. Hakim SM, Ammar MA, Reyad MS (2018) Effect of therapeutic hypothermia on survival and neurological outcome in adults suffering cardiac arrest: a systematic review and meta-analysis. Minerva Anestesiol 84(6): 720–730. https://doi.org/10.23736/S0375-9393.18.12164-X

    Article  PubMed  Google Scholar 

  9. Yamada KP, Kariya T, Aikawa T, Ishikawa K (2021) Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 8: 1. https://doi.org/10.3389/fcvm.2021.642843

    Article  CAS  Google Scholar 

  10. Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu S, Munteanu С (2022) Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 23: 907. https://doi.org/10.3390/ijms23020907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klichkhanov NK, Ismailova ZG, Astaeva MD (2016) Intensity of free radical processes in rats’ blood while deep hypothermia and self-warming. Acta Biomed Sci 1(5): 104–109. https://doi.org/10.12737/23402

    Article  Google Scholar 

  12. Alva N, Palomeque J, Carbonell T (2013) Oxidative Stress and Antioxidante Activity in Hypothermia and rewarming: can RONS Modulate the Benefical Effects of Therapeutic Hypothermia. Oxidative Med Cel Longevit 2013: 20–28. https://doi.org/10.1155/2013/957054

    Article  CAS  Google Scholar 

  13. Schaible N, Han YS, Tveita T, Siecka GC (2018) Role of Superoxide Ion Formation in Hypothermia/Rewarming Induced Contractile Dysfunction in Cardiomyocytes. Cryobiology 81: 57–64. https://doi.org/10.1016/j.cryobiol.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR (2019) The Intensity of Free Radical Processes on Rat Liver Mitochondria under Moderate Hypothermia of Various Duration. Cell Tissue Biol 13: 446–456. https://doi.org/10.1134/S1990519X1906004X

    Article  Google Scholar 

  15. Khizrieva SI, Khalilov RA, Dzhafarova AM, Abdullaev VR (2022) Antioxidant Status of Rat Liver Mitochondria under Conditions of Moderate Hypothermia of Different Duration. Bull Exp Biol Med 172(3): 305–309. https://doi.org/10.1007/s10517-022-05382-w

    Article  CAS  PubMed  Google Scholar 

  16. Khalilov RA, Khizrieva SI, Dzhafarova AM, Abdullaev VR (2020) The Bioenergetic characteristics of mitochondria of the rat liver at low body temperatures. Probl Biol Med Pharmaceut Chem 22(5): 35–41. https://doi.org/10.29296/25877313-2019-05-07)

    Article  Google Scholar 

  17. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Letters 495(1–2): 12–15. https://doi.org/10.1016/S0014-5793(01)02316-X

    Article  CAS  PubMed  Google Scholar 

  18. Baranov SV, Stavrovskaya IG, Brown AM, Tyryshkin AM, Kristal BS (2008) Kinetic Model for Ca2+-induced Permeability Transition in Energized Liver Mitochondria Discriminates between Inhibitor Mechanisms. J Biol Chem 283(2): 665–676. https://doi.org/10.1074/jbc.M703484200.

    Article  CAS  PubMed  Google Scholar 

  19. Rybalchenko VK, Koganov MM (1998) Membrane structure and functions. Kiev, VSh. 312 p. (In Russ).

    Google Scholar 

  20. Lowry DH (1951) Protein measurement with the Folinphenol reagent. J Biol Chem 193(1): 265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  21. Brookes PS, Darley-Usmar VM (2004) Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am J Physiol Heart Circ Physiol 286: 39–46. https://doi.org/10.1152/ajpheart.00742.2003

    Article  Google Scholar 

  22. Marinelli F, Almagor L, Hiller R, Giladi M, Khananshvili D, Faraldo-Gómez J, Kaback HR (2014) Sodium recognition by the Na+/Ca2+ exchanger in the out ward facing conformation. Proc Natl Acad Sci USA 111: 5354–5362. https://doi.org/10.1073/pnas.1415751111

    Article  CAS  Google Scholar 

  23. Tsai MF, Jiang D, Zhao L, Clapham D, Miller CJ (2014) Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. Gen Physiol 143(1): 67–73. https://doi.org/10.1085/jgp.201311096

    Article  CAS  Google Scholar 

  24. Belosludtsev KN, Dubinin MV, Belosludtseva NV, Mironova GD (2019) Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry (Moscow). 84(6): 593–607. https://doi.org/10.1134/s0006297919060026

  25. Petronilli V Cola C, Massari S, Colonna R, Bernardi P (1993) Physiological effectors modify voltage sensing by the cyclo-sporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 268(29): 21939–21945. https://doi.org/10.1016/s0021-9258(20)80631-0

    Article  PubMed  Google Scholar 

  26. Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biochemistry (Moscow) 70(7): 987–994. https://doi.org/10.1007/s10541-005-0189-x

  27. Zoratti M, Szabb I (1995) The mitochondrial permeability transitions. Biochim Biophys Acta 1241(2): 139–176. https://doi.org/10.1016/0304-4157(95)00003-a

    Article  PubMed  Google Scholar 

  28. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cel Cardiol 46: 821–831. https://doi.org/10.1016/j.yjmcc.2009.02.021

    Article  CAS  Google Scholar 

  29. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Letters 567(1): 96–102. https://doi.org/10.1016/j.febslet.2004.03.071

    Article  CAS  PubMed  Google Scholar 

  30. Bernardi P, Di Lisa F (2014) The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cel Cardiol 78:100–106. https://doi.org/10.1016/j.yjmcc.2014.09.023

    Article  CAS  Google Scholar 

  31. Batandier СС, Leverve X, Fontaine E (2004) Opening of the Mitochondrial Permeability Transition Pore Induces Reactive Oxygen Species Production at the Level of the Respiratory Chain Complex I. J Biol Chem 279(17): 17197–17204. https://doi.org/10.1074/jbc.m310329200

    Article  CAS  PubMed  Google Scholar 

  32. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548. https://doi.org/10.1042/BJ20011672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the State assignment (FZNZ-2020-0002).

Author information

Authors and Affiliations

Authors

Contributions

S.I.Kh.—data collection and description; R.A.Kh.—conceptualization and experimental design; A.M.D.—statistical data processing and data interpretation; V.R.A.—critical literature analysis and conclusion generating.

Corresponding author

Correspondence to A. M. Dzhafarova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional principles of care and use of laboratory animals were observed. All experimental procedures that involved animals complied with ethical standards approved by legal acts of the Russian Federation, the principles of the Basel Declaration, the Order of the Russian Federation Ministry of Health no. 199n of 01.04.2016 (Rules of Good Laboratory Practice).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 4, pp. 310–318https://doi.org/10.31857/S0044452923040046,.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khizrieva, S.I., Khalilov, R.A., Dzhafarova, A.M. et al. Calcium-Accumulating Ability of Rat Liver Mitochondria in Hypothermia of Various Duration. J Evol Biochem Phys 59, 1077–1085 (2023). https://doi.org/10.1134/S0022093023040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040063

Keywords:

Navigation