Skip to main content
Log in

Postcolitis Alterations in Nociceptive Properties of Neurons in the Rat Nucleus Raphe Magnus and Dorsal Raphe Nucleus

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Dysfunction of the brain serotonergic system is thought to play a leading role in the pathogenesis of chronic abdominal pain and comorbid somatic hyperalgesia, which ail a significant portion of patients with gastrointestinal diseases, even in remission. However, specific changes in nociceptive properties of the serotonergic structures that can be initiated by organic pathology and persist after its resolution remain obscure. The aim of our neurophysiological study conducted on anesthetized rats, healthy and recovered from colitis, was to reveal postcolitis alterations in neuronal responses of the nucleus raphe magnus (RMg) and dorsal raphe nucleus (DR) to visceral (colorectal distension) and somatic (squeezing of the tail) noxious stimulation, which persist after the resolution of intestinal inflammation. It was shown that both nuclei contain different groups of nociceptive neurons: (1) excited only by colorectal distension (visceral); (2) activated only by tail pinch (somatic); (3) excited by both of these types of stimulation (general); (4) inhibited by either type of pain stimulation. In the RMg of postcolitis rats, the number of inhibited neurons was increased, while the total proportion of excited nociceptive neurons was reduced compared to healthy animals. Colorectal distension in postcolitis rats evoked enhanced inhibition of RMg neurons, whereas noxious stimulation of their tail unaffected by the pathology led to increased excitation of RMg selective somatic and general nociceptive cells. In the DR of postcolitis rats, the proportion of inhibited neurons was reduced, while the increased population of excited neurons contained less visceral and more somatic selective cells. This was accompanied by an enhancement of selective responses of the latter to somatic pain stimuli and an increase in nonselective excitation of DR neurons in response to visceral and somatic nociceptive signals. The revealed neuronal alterations in the RMg and DR may promote postcolitis dysfunction of these raphe nuclei in the endogenous control of visceral and somatic pain sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gaus OV, Livzan MA (2020) Fundamentals of abdominal pain formation in IBS patients. Effect pharmacoth 16(15): 102–111. https://doi.org/10.33978/2307-3586-2020-16-15-102-111

    Article  Google Scholar 

  2. Agafonova NA, Yakovenko EP, Ivanov AN, Yakovenko AV (2018) Abdominal pain and visceral hypersensitivity like two sides of the same reality for IBS patients. Effect pharmacother 32: 26–33. (In Russ).

    Google Scholar 

  3. Bielefeldt K, Davis B, Binion DG. (2009) Pain and inflammatory bowel disease. Inflamm Bowel Dis 15(5): 778–788. https://doi.org/10.1002/ibd.20848

    Article  PubMed  Google Scholar 

  4. Vergnolle N (2022) Abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 19: 350. https://doi.org/10.1038/s41575-022-00599-6

    Article  PubMed  Google Scholar 

  5. Wils P, Caron B, D’Amico F, Danese S, Peyrin-Biroulet L. (2022) Abdominal Pain in Inflammatory Bowel Diseases: A Clinical Challenge. J Clin Med 11(15): 4269. https://doi.org/10.3390/jcm11154269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ceuleers H, Van Spaendonk H, Hanning N, Heirbaut J, Lambeir AM, Joossens J, Augustyns K, De Man JG, De Meester I, De Winter BY (2016) Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World J Gastroenterol 22(47): 10275–10286. https://doi.org/10.3748/wjg.v22.i47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R (2016) The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 22(4): 558–574. https://doi.org/10.5056/jnm16001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crowell MD (2004) Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol 141(8): 1285–1293. https://doi.org/10.1038/sj.bjp.0705762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gros M, Gros B, Mesonero JE, Latorre E (2021) Neurotransmitter Dysfunction in Irritable Bowel Syndrome: Emerging Approaches for Management. J Clin Med 10(15): 3429. https://doi.org/10.3390/jcm10153429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q (2021) Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. Crohn’s and Colitis 360 (3):otab073. https://doi.org/10.1093/crocol/otab073

    Article  Google Scholar 

  11. Nakai A, Kumakura Y, Boivin M, Rosa P, Diksic M, D’Souza D, Kersey K (2003) Sex differences of brain serotonin synthesis in patients with irritable bowel syndrome using alpha-[11C]methyl-L-tryptophan, positron emission tomography and statistical parametric mapping. Can J Gastroenterol 17(3): 191–196. https://doi.org/10.1155/2003/572127

    Article  PubMed  Google Scholar 

  12. O’Mahony S, Chua AS, Quigley EM, Clarke G, Shanahan F, Keeling PW, Dinan TG (2008) Evidence of an enhanced central 5HT response in irritable bowel syndrome and in the rat maternal separation model. Neurogastroenterol Motil 20(6): 680–688. https://doi.org/10.1111/j.1365-2982.2007.01065.x

    Article  CAS  PubMed  Google Scholar 

  13. Ren TH, Wu J, Yew D, Ziea E, Lao L, Leung WK, Berman B, Hu PJ, Sung JJ (2007) Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 292(3): G849–G856. https://doi.org/10.1152/ajpgi.00400.2006

    Article  CAS  PubMed  Google Scholar 

  14. Zhang HA, Sang N, Ge X, Huang Q, Li XL, Sha J (2018) Nesfatin-1 in the dorsal raphe nucleus influences visceral sensitivity via 5-HT neurons in male maternally separated rats. Sci Rep 8: 9334. https://doi.org/10.1038/s41598-018-27592-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4): 334–344. https://doi.org/10.1016/j.bbi.2004.09.002

    Article  PubMed  Google Scholar 

  16. Lu Y, Westlund KN (2001) Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res 889: 118–130. https://doi.org/10.1016/s0006-8993(00)03124-3

    Article  CAS  PubMed  Google Scholar 

  17. Wan J, Ding Y, Tahir AH, Shah MK, Janyaro H, Li X, Zhong J, Vodyanoy V, Ding M (2017) Electroacupuncture attenuates visceral hypersensitivity by inhibiting JAK2/STAT3 signaling pathway in the descending pain modulation system. Front Neurosci 11: 644. https://doi.org/10.3389/fnins.2017.00644

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F (2010) Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain 14(2): 120. e1–e9. https://doi.org/10.1016/j.ejpain.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  19. Chen MX, Chen Y, Fu R, Liu SY, Yang QQ, Shen TB (2016) Activation of 5-HT and NR2B contributes to visceral hypersensitivity in irritable bowel syndrome in rats. Am J Transl Res 8(12): 5580–5590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209508/

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Martins I, Tavares I (2017) Reticular Formation and Pain: The Past and the Future. Front Neuroanat 11: 51. https://doi.org/10.3389/fnana.2017.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120(11): 3779–3787. https://doi.org/10.1172/JCI43766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Q-P, Nakai Y (1994) The dorsal raphe: An important nucleus in pain modulation. Brain Res Bull 34(6): 575–585. https://doi.org/10.1016/0361-9230(94)90143-0

    Article  CAS  PubMed  Google Scholar 

  23. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6): 355–474. https://doi.org/10.1016/s0301-0082(02)00009-6

    Article  CAS  PubMed  Google Scholar 

  24. Wei F, Gu M, Chu YX (2012) New tricks for an old slug: descending serotonergic system in pain. Sheng Li Xue Bao 64(5): 520–530.

    CAS  PubMed  Google Scholar 

  25. Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G (2021) Brain circuits for pain and its treatment. Sci Transl Med 13(619): eabj7360. https://doi.org/10.1126/scitranslmed.abj7360

    Article  PubMed  Google Scholar 

  26. Almeida TF, Roizenblatt S, Tufik S (2004) Afferent pain pathways: a neuroanatomical review. Brain Res 1000(1–2): 40–56. https://doi.org/10.1016/j.brainres.2003.10.073

    Article  CAS  PubMed  Google Scholar 

  27. Almeida A, Leite-Almeida H, Tavares I (2006) Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. Drug Discov Today Dis Mech 3(3): 305–312. https://doi.org/10.1016/j.ddmec.2006.09.001

    Article  Google Scholar 

  28. Chen Q, Heinricher MM (2022) Shifting the Balance: How Top-Down and Bottom-Up Input Modulate Pain via the Rostral Ventromedial Medulla. Front Pain Res (Lausanne) 3: 932476. https://doi.org/10.3389/fpain.2022.932476

  29. Cleary DR, Heinricher MM (2013) Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation. Pain 154(6): 845–855. https://doi.org/10.1016/j.pain.2013.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  30. Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25(6): 319–325. https://doi.org/10.1016/s0166-2236(02)02157-4

    Article  CAS  PubMed  Google Scholar 

  31. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96(3): 795–803.

    Article  CAS  PubMed  Google Scholar 

  32. Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142: 183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  33. Lyubashina OA, Sivachenko IB, Busygina II (2021) Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation. J Evol Biochem Physiol 57(5): 1150–1162. https://doi.org/10.1134/S0022093021050161

    Article  Google Scholar 

  34. Lyubashina OA, Sivachenko IB, Mikhalkin AA (2022) Impaired visceral pain-related functions of the mid-brain periaqueductal gray in rats with colitis. Brain Res Bull 182: 12–25. https://doi.org/10.1016/j.brainresbull.2022.02.002

    Article  PubMed  Google Scholar 

  35. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates; 4th ed. London Acad Press.

    Google Scholar 

  36. Fields HL, Bry J, Hentall I, Zorman G (1983) The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 3(12): 2545–2552. https://doi.org/10.1523/JNEUROSCI.03-12-02545.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heinricher MM (2016) Pain Modulation and the Transition from Acute to Chronic Pain. Adv Exp Med Biol 904: 105–115. https://doi.org/10.1007/978-94-017-7537-3_8

    Article  CAS  PubMed  Google Scholar 

  38. Heinricher MM, Morgan MM, Fields HL (1992) Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48(3): 533–543. https://doi.org/10.1016/0306-4522(92)90400-v

    Article  CAS  PubMed  Google Scholar 

  39. Brink TS, Hellman KM, Lambert AM, Mason P (2006) Raphe magnus neurons help protect reactions to visceral pain from interruption by cutaneous pain. J Neurophysiol 96(6): 3423–3432. https://doi.org/10.1152/jn.00793.2006

    Article  PubMed  Google Scholar 

  40. Brink TS, Mason P (2003) Raphe magnus neurons respond to noxious colorectal distension. J Neurophysiol 89(5): 2506–2515. https://doi.org/10.1152/jn.00825.2002

    Article  PubMed  Google Scholar 

  41. Sikandar S, Dickenson AH (2011) Pregabalin modulation of spinal and brainstem visceral nociceptive processing. Pain 152(10): 2312–2322. https://doi.org/10.1016/j.pain.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen T, Dong YX, Li YQ (2003) Fos expression in serotonergic neurons in the rat brainstem following noxious stimuli: an immunohistochemical double-labelling study. J Anat 203(6): 579–588. https://doi.org/10.1046/j.1469-7580.2003.00242.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dong YX, Han ZA, Xiong KH, Rao ZR (1997) Fos expression in serotonergic midbrain neurons projecting to the paraventricular nucleus of hypothalamus after noxious stimulation of the stomach: a triple labeling study in the rat. Neurosci Res 27(2): 155–160. https://doi.org/10.1016/s0168-0102(96)01143-1

    Article  CAS  PubMed  Google Scholar 

  44. Vilela FC, Vieira JS, Vitor-Vieira F, Kalil-Cutti B, da Silva JRT, Giusti-Paiva A, da Silva ML (2021) Maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. Neurosci Lett 748: 135734. https://doi.org/10.1016/j.neulet.2021.135734

    Article  CAS  PubMed  Google Scholar 

  45. Montagne-Clavel J, Oliveras JL, Martin G (1995) Single-unit recordings at dorsal raphe nucleus in the awake-anesthetized rat: spontaneous activity and responses to cutaneous innocuous and noxious stimulations. Pain 60(3): 303–310. https://doi.org/10.1016/0304-3959(94)00129-3

    Article  CAS  PubMed  Google Scholar 

  46. Shima K, Nakahama H, Yamamoto M (1986) Firing properties of two types of nucleus raphe dorsalis neurons during the sleep-waking cycle and their responses to sensory stimuli. Brain Res 399(2): 317–326. https://doi.org/10.1016/0006-8993(86)91522-2

    Article  CAS  PubMed  Google Scholar 

  47. Lyubashina OA, Sivachenko IB, Sokolov AY (2019) Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 152: 299–310. https://doi.org/10.1016/j.brainresbull.2019.07.030

    Article  PubMed  Google Scholar 

  48. Ness TJ, Follett KA, Piper J, Dirks BA (1998) Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res 802(1–2): 163–174. https://doi.org/10.1016/s0006-8993(98)00608-8

    Article  CAS  PubMed  Google Scholar 

  49. Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A (2011) Response properties of nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and healthy control rats: modulation of responses by the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 86(1–2): 82–90. https://doi.org/10.1016/j.brainresbull.2011.06.014

    Article  PubMed  Google Scholar 

  50. Luz LL, Fernandes EC, Sivado M, Kokai E, Szucs P, Safronov BV (2015) Monosynaptic convergence of somatic and visceral C-fiber afferents on projection and local circuit neurons in lamina I: a substrate for referred pain. Pain 156(10): 2042–2051. https://doi.org/10.1097/j.pain.0000000000000267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin C, Farber JP, Linderoth B, Shahid A, Foreman RD (2008) Neuromodulation of thoracic intraspinal visceroreceptive transmission by electrical stimulation of spinal dorsal column and somatic afferents in rats. J Pain 9(1): 71–78. https://doi.org/10.1016/j.jpain.2007.08.007

    Article  PubMed  Google Scholar 

  52. Snowball RK, Semenenko FM, Lumb BM (2000) Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study. Neuroscience 99(2): 351–361. https://doi.org/10.1016/s0306-4522(00)00203-7

    Article  CAS  PubMed  Google Scholar 

  53. Monconduit L, Bourgeais L, Bernard JF, Villanueva L (2003) Convergence of cutaneous, muscular and visceral noxious inputs onto ventromedial thalamic neurons in the rat. Pain 103(1–2): 83–91. https://doi.org/10.1016/s0304-3959(02)00418-9

    Article  PubMed  Google Scholar 

  54. Zhang HQ, Al-Chaer ED, Willis WD (2002) Effect of tactile inputs on thalamic responses to noxious colorectal distension in rat. J Neurophysiol 88(3): 1185–1196. https://doi.org/10.1152/jn.2002.88.3.1185

    Article  PubMed  Google Scholar 

  55. Zhang HQ, Rong PJ, Zhang SP, Al-Chaer ED, Willis WD (2003) Noxious visceral inputs enhance cutaneous tactile response in rat thalamus. Neurosci Lett 336(2): 109–112. https://doi.org/10.1016/s0304-3940(02)01243-0

    Article  CAS  PubMed  Google Scholar 

  56. Huang KW, Ochandarena NE, Philson AC, Hyun M, Birnbaum JE, Cicconet M, Sabatini BL (2019) Molecular and anatomical organization of the dorsal raphe nucleus. Elife 8: e46464. https://doi.org/10.7554/eLife.46464

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nguyen E, Smith KM, Cramer N, Holland RA, Bleimeister IH, Flores-Felix K, Silberberg H, Keller A, Le Pichon CE, Ross SE (2022) Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 145(7): 2586–2601. https://doi.org/10.1093/brain/awac189

    Article  PubMed  PubMed Central  Google Scholar 

  58. Soiza-Reilly M, Commons KG (2014) Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front Neural Circuits 8: 105. https://doi.org/10.3389/fncir.2014.00105

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhao Q, Ito T, Soko C, Hori Y, Furuyama T, Hioki H, Konno K, Yamasaki M, Watanabe M, Ohtsuka S, Ono M, Kato N, Yamamoto R (2022) Histochemical Characterization of the Dorsal Raphe-Periaqueductal Grey Dopamine Transporter Neurons Projecting to the Extended Amygdala. eNeuro 9(3): 1. https://doi.org/10.1523/ENEURO.0121-22.2022

    Article  Google Scholar 

  60. Gau R, Sévoz-Couche C, Hamon M, Bernard JF (2013) Noxious stimulation excites serotonergic neurons: a comparison between the lateral paragigantocellular reticular and the raphe magnus nuclei. Pain 154(5): 647–659. https://doi.org/10.1016/j.pain.2012.09.012

    Article  PubMed  Google Scholar 

  61. Gao K, Mason P (2000) Serotonergic Raphe magnus cells that respond to noxious tail heat are not ON or OFF cells. J Neurophysiol 84(4): 1719–1725. https://doi.org/10.1152/jn.2000.84.4.1719

    Article  CAS  PubMed  Google Scholar 

  62. Radhakrishnan R, Sluka KA (2009) Increased glutamate and decreased glycine release in the rostral ventromedial medulla during induction of a pre-clinical model of chronic widespread muscle pain. Neurosci Lett 457(3): 141–145. https://doi.org/10.1016/j.neulet.2009.03.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winkler CW, Hermes SM, Chavkin CI, Drake CT, Morrison SF, Aicher SA (2006) Kappa opioid receptor (KOR) and GAD67 immunoreactivity are found in OFF and NEUTRAL cells in the rostral ventromedial medulla. J Neurophysiol 96(6): 3465–3473. https://doi.org/10.1152/jn.00676.2006

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han BX, Zhou X, Wang F (2015) Identifying local and descending inputs for primary sensory neurons. J Clin Invest 125(10): 3782–3794. https://doi.org/10.1172/JCI81156

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pedersen NP, Vaughan CW, Christie MJ (2011) Opioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice. J Neurophysiol 106(2): 731–740. https://doi.org/10.1152/jn.01062.2010

    Article  CAS  PubMed  Google Scholar 

  66. Yang B, Zhang LC, Zeng YM (2003) Microinjection of L-NAME into dorsal raphe nucleus inhibits nociceptive response in sigmoid pain model of rats. Sheng Li Xue Bao 55(5): 577–582. (In Chinese).

    CAS  PubMed  Google Scholar 

  67. Lyubashina O, Busygina I, Sivachenko I, Panteleev S (2021) 5-HT1A Receptor Activation by Buspirone Facilitates Post-Inflammatory Intestinal Hypersensitivity in a Rat Model. FASEB J 35(S1): 02269. https://doi.org/10.1096/fasebj.2021.35.S1.02269

    Article  Google Scholar 

  68. Deiteren A, van der Linden L, de Wit A, Ceuleers H, Buckinx R, Timmermans JP, Moreels TG, Pelckmans PA, De Man JG, De Winter BY (2015) P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization. PLoS One 10(4): e0123810. https://doi.org/10.1371/journal.pone.0123810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eijkelkamp N, Kavelaars A, Elsenbruch S, Schedlowski M, Holtmann G, Heijnen CJ (2007) Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 293(4): G749–G757. https://doi.org/10.1152/ajpgi.00114.2007

    Article  CAS  PubMed  Google Scholar 

  70. Zhou Q, Price DD, Caudle RM, Verne GN (2008) Visceral and somatic hypersensitivity in TNBS-induced colitis in rats. Dig Dis Sci 53(2): 429–435. https://doi.org/10.1007/s10620-007-9881-6

    Article  PubMed  Google Scholar 

  71. Carlson JD, Maire JJ, Martenson ME, Heinricher MM (2007) Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci 27(48): 13222–13231. https://doi.org/10.1523/JNEUROSCI.3715-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gonçalves L, Almeida A, Pertovaara A (2007) Pronociceptive changes in response properties of rostroventromedial medullary neurons in a rat model of peripheral neuropathy. Eur J Neurosci 26(8): 2188–2195. https://doi.org/10.1111/j.1460-9568.2007.05832.x

    Article  PubMed  Google Scholar 

  73. Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM (2006) Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 95(1): 33–41. https://doi.org/10.1152/jn.00449.2005

    Article  PubMed  Google Scholar 

  74. Costa-Pereira JT, Serrão P, Martins I, Tavares I (2020) Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy-induced neuropathy: The role of spinal 5-HT3 receptors. Eur J Neurosci 51(8): 1756–1769. https://doi.org/10.1111/ejn.14614

    Article  PubMed  Google Scholar 

  75. Wei F, Dubner R, Zou S, Ren K, Bai G, Wei D, Guo W (2010) Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci 30: 8624–8636. https://doi.org/10.1523/JNEUROSCI.5389-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang L, Hammond DL (2010) Cellular basis for opioid potentiation in the rostral ventromedial medulla of rats with persistent inflammatory nociception. Pain 149(1): 107–116. https://doi.org/10.1016/j.pain.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aby F, Lorenzo LE, Grivet Z, Bouali-Benazzouz R, Martin H, Valerio S, Whitestone S, Isabel D, Idi W, Bouchatta O, De Deurwaerdere P, Godin AG, Herry C, Fioramonti X, Landry M, De Koninck Y, Fossat P (2022) Switch of serotonergic descending inhibition into facilitation by a spinal chloride imbalance in neuropathic pain. Sci Adv 8(30): eabo0689. https://doi.org/10.1126/sciadv.abo0689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cai Y-Q, Wang W, Hou Y-Y, Pan ZZ (2014) Optogenetic Activation of Brainstem Serotonergic Neurons Induces Persistent Pain Sensitization. Molecular Pain 10: 1. https://doi.org/10.1186/1744-8069-10-70

    Article  CAS  Google Scholar 

  79. Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25(12): 613–617. https://doi.org/10.1016/j.tips.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  80. Bagdy E, Kiraly I, Harsing LG (2000) Reciprocal Innervation between Serotonergic and GABAergic Neurons in Raphe Nuclei of the Rat. Neurochem 25: 1465–1473. https://doi.org/10.1023/A:1007672008297

    Article  CAS  Google Scholar 

  81. Bliercrow P, Piñeyro G, el Mansari M, Bergeron R, de Montigny C (1998) Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann NY Acad Sci 861: 204–216. https://doi.org/10.1111/j.1749-6632.1998.tb10192.x

    Article  Google Scholar 

  82. Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116(3): 669–683. https://doi.org/10.1016/s0306-4522(02)00584-5

    Article  CAS  PubMed  Google Scholar 

  83. Lemos JC, Pan YZ, Ma X, Lamy C, Akanwa AC, Beck SG (2006) Selective 5-HT receptor inhibition of glutamatergic and GABAergic synaptic activity in the rat dorsal and median raphe. Eur J Neurosci 24(12): 3415–3430. https://doi.org/10.1111/j.1460-9568.2006.05222.x

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ganley RP, de Sousa MM, Werder K, Öztürk T, Mendes R, Ranucci M, Wildner H, Zeilhofer HU (2023) Targeted anatomical and functional identification of antinociceptive and pronociceptive serotonergic neurons that project to the spinal dorsal horn. Elife 12: e78689. https://doi.org/10.7554/eLife.78689

    Article  PubMed  PubMed Central  Google Scholar 

  85. Inyushkin AN, Merkulova NA, Orlova AO, Inyushkina EM (2010) Local GABAergic modulation of the activity of serotoninergic neurons in the nucleus raphe magnus. Neurosci Behav Physiol 40(8): 885–893. https://doi.org/10.1007/s11055-010-9337-x

    Article  CAS  PubMed  Google Scholar 

  86. Li MH, Suchland KL, Ingram SL (2015) GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla. J Physiol 593(1): 217–230. https://doi.org/10.1113/jphysiol.2014.275701

    Article  CAS  PubMed  Google Scholar 

  87. Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann NY Acad Sci 1018: 46–57. https://doi.org/10.1196/annals.1296.005

    Article  PubMed  Google Scholar 

  88. Wu JC, Ziea ET, Lao L, Lam EF, Chan CS, Liang AY, Chu SL, Yew DT, Berman BM, Sung JJ (2010) Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome. J Neurogastroenterol Motil 16(3): 306–314. https://doi.org/10.5056/jnm.2010.16.3.306

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bi Z, Zhang S, Meng Y, Feng Y, Wang Y, Wang E, Pan X, Zhu R, Fan H, Pang S, Zhu L, Yuan J (2021) Female serotonin transporter-knockout rat: A potential model of irritable bowel syndrome. FASEB J 35(7): e21701. https://doi.org/10.1096/fj.202000007RRR

    Article  CAS  PubMed  Google Scholar 

  90. Andersen E, Dafny N (1983) An ascending serotonergic pain modulation pathway from the dorsal raphe nucleus to the parafascicularis nucleus of the thalamus. Brain Res 269(1): 57–67. https://doi.org/10.1016/0006-8993(83)90962-9

    Article  CAS  PubMed  Google Scholar 

  91. Dugué GP, Lörincz ML, Lottem E, Audero E, Matias S, Correia PA, Léna C, Mainen ZF (2014) Optogenetic recruitment of dorsal raphe serotonergic neurons acutely decreases mechanosensory responsivity in behaving mice. PLoS One 9(8): e105941. https://doi.org/10.1371/journal.pone.0105941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marinelli S, Schnell SA, Hack SP, Christie MJ, Wessendorf MW, Vaughan CW (2004) Serotonergic and nonserotonergic dorsal raphe neurons are pharmacologically and electrophysiologically heterogeneous. J Neurophysiol 92(6): 3532–3537. https://doi.org/10.1152/jn.00437.2004

    Article  CAS  PubMed  Google Scholar 

  93. Xie L, Wu H, Chen Q, Xu F, Li H, Xu Q, Jiao C, Sun L, Ullah R, Chen X (2022) Divergent modulation of pain and anxiety by GABAergic neurons in the ventrolateral periaqueductal gray and dorsal raphe. Neuropsychopharmacology 2022: 1–11. https://doi.org/10.1038/s41386-022-01520-0

    Article  CAS  Google Scholar 

  94. Liu X, He J, Jiang W, Wen S, Xiao Z (2023) The roles of periaqueductal gray and dorsal raphe nucleus dopaminergic systems in the mechanisms of thermal hypersensitivity and depression in mice. J Pain S1526–5900(23)00037–8. https://doi.org/10.1016/j.jpain.2023.02.004

  95. Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McKlveen JM, Pleil KE, Kash TL (2016) Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain. Neuropsychopharmacology 41(8): 2122–2132. https://doi.org/10.1038/npp.2016.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yu W, Pati D, Pina MM, Schmidt KT, Boyt KM, Hunker AC, Zweifel LS, McElligott ZA, Kash TL (2021) Periaqueductal gray/dorsal raphe dopamine neurons contribute to sex differences in pain-related behaviors. Neuron 109(8): 1365–1380. e5. https://doi.org/10.1016/j.neuron.2021.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 23-25-00151, https://rscf.ru/project/23-25-00151/.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (O.A.L.), data collection (B.M.S., I.B.S.), data processing (B.M.S., I.B.S, O.A.L.), writing and editing the manuscript (B.M.S., I.B.S., O.A.L.).

Corresponding author

Correspondence to O. A. Lyubashina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All experimental procedures complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Institutional Animal Care and Use Committee of the Pavlov Institute of Physiology of the Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 4, pp. 292–309https://doi.org/10.31857/S004445292304006X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushkevich, B.M., Sivachenko, I.B. & Lyubashina, O.A. Postcolitis Alterations in Nociceptive Properties of Neurons in the Rat Nucleus Raphe Magnus and Dorsal Raphe Nucleus. J Evol Biochem Phys 59, 1057–1076 (2023). https://doi.org/10.1134/S0022093023040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023040051

Keywords:

Navigation