Skip to main content
Log in

Impact of Ozone on the Oxygen Affinity Blood Properties and Prooxidant-Antioxidant Balance under Effect of H2S-Generating System

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Hydrogen sulfide belongs to the group of signaling agents called gaseous transmitters and plays an important role in many physiological processes, in particular, in the realization of oxygen-dependent mechanisms. The aim of this study was to evaluate the significance of hydrogen sulfide in the effect of ozone on the oxygen affinity blood properties and the prooxidant-antioxidant balance in vitro experiment. Ozone (6 mg/L concentration) and drugs that affect the synthesis of hydrogen sulfide (propargylglycine, sodium hydrosulfide and its combination with nitroglycerin) were used. The use of propargylglycine, an inhibitor of the synthesis of hydrogen sulfide, leads to a decrease in the effect of ozone on the blood oxygen transport function (decrease in PO2, SO2, P 50real). When sodium hydrosulfide is added, the effect of this gas on these parameters does not increase, but in its combination with nitroglycerin, the effect of ozone on the blood oxygen transport function increases. Propargylglycine does not affect the prooxidant-antioxidant balance under the conditions of the experiment, and donors of hydrogen sulfide and nitrogen monoxide increase the activity of catalase. Propargylglycine under the action of ozone leads to a decrease in the level of nitrate/nitrite, and sodium hydrosulfide increases their concentration. The combination of sodium hydrosulfide and nitroglycerin leads to the accumulation of hydrogen sulfide in the blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Tirelli U, Franzini M, Valdenassi L, Pisconti S, Taibi R, Torrisi C, Pandolfi S, Chirumbolo S (2021) Fatigue in post-acute sequelae of SARS-CoV2 (PASC) treated with oxygen-ozone autohemotherapy—preliminary results on 100 patients. Eur Rev Med Pharmacol Sci 25(18): 5871–5875. https://doi.org/10.26355/eurrev_202109_26809

    Article  CAS  PubMed  Google Scholar 

  2. Pchepiorka R, Moreira MS, Lascane NADS, Catalani LH, Allegrini S Jr, de Lima NB, Gonçalves EF (2020) Effect of ozone therapy on wound healing in the buccal mucosa of rats. Arch Oral Biol 119: 104889. https://doi.org/10.1016/j.archoralbio.2020.104889

    Article  CAS  PubMed  Google Scholar 

  3. Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA (2017) Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res 7(3): 212–219. https://doi.org/10.4103/2045-9912.215752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robert B, Subramaniam S (2022) Gasotransmitter-Induced Therapeutic Angiogenesis: A Biomaterial Prospective. ACS Omega 7(50): 45849–45866. https://doi.org/10.1021/acsomega.2c05599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Głowacka U, Brzozowski T, Magierowski M (2020) Synergisms, discrepancies and Interactions between Hydrogen Sulfide and Carbon Monoxide in the Gastrointestinal and Digestive System Physiology, Pathophysiology and Pharmacology. Biomolecules 10(3): 445–460. https://doi.org/10.3390/biom10030445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang YW, Deng NH, Tian KJ, Liu LSh, Wang Z, Wei DH, Liu HT, Jiang ZhS (2022) Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities. Front Cardiovasc Med 9: 909178. https://doi.org/10.3389/fcvm.2022.909178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zinchuk VV, Biletskaya ES, Gulyai IE (2021) Effect of ozone on blood oxygen transport function and pro-oxidant–antioxidant balance in under conditions of changing nitrogen monoxide formation in vitro experiments. Russ J Physiol 107(1): 16–27. https://doi.org/10.31857/S0869813921010106

    Article  Google Scholar 

  8. Mys LA, Strutynska NA, Goshovska YV, Sagach VF (2020) Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative-nitrosative stress and restores endothelial-dependent vasorelaxation in old rats. Can J Physiol Pharmacol 98(5): 275–281. https://doi.org/10.1139/cjpp-2019-0411

    Article  CAS  PubMed  Google Scholar 

  9. Saveringhaus JW (1966) Blood gas calculator. J Appl Physiol 21(5): 1108–1116. https://doi.org/10.1152/jappl.1966.21.3.1108

    Article  Google Scholar 

  10. Mendes R, Cardoso C, Pestana C (2009) Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test. Food Chem 112: 1038–1045. https://doi.org/10.1016/j.foodchem.2008.06.052

    Article  CAS  Google Scholar 

  11. Diplock AT, Symons MCR, Rice-Evans CA (1991) Techniques in free radical research. In: Lab Techn in Biochem and Mol Biol 22: 290. https://www.elsevier.com/books/techniques-in-free-radical-research/diplock/978-0-444-81304-6

  12. Korolyuk MA, Ivanova LI, Mayorova IG, Tokareva VE (1988) Method for determination of catalase activity. Lab Delo 1: 16–19. https://pubmed.ncbi.nlm.nih.gov/2451064/

    Google Scholar 

  13. Taylor SL, Lamden MP, Tappel AL (1976) Sensitive fluorometric method for tissue tocopherol analysis. Lipids 11(7): 530–538. https://doi.org/10.1007/BF02532898

    Article  CAS  PubMed  Google Scholar 

  14. Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43(5): 645–657. https://doi.org/10.1016/j.freeradbiomed.2007.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Norris EJ, Culberson CR, Narasimhan S, Clemens MG (2011) The liver as central regulator of hydrogen sulfide. Shock 36(3): 242– 250. https://doi.org/10.1097/SHK.0b013e3182252ee7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ross BK, Hlastala MP, Frank R (1979) Lack of ozone effects on oxygen hemoglobin affinity. Arch Environ Health 34(3): 161–163. https://doi.org/10.1080/00039896.1979.10667389

    Article  CAS  PubMed  Google Scholar 

  17. Giunta R, Coppola A, Luongo C, Sammartino A, Guastafierro S, Grassia A, Giunta L, Mascolo L, Tirelli A, Coppola L (2001) Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann Hematol 80(12): 745–748. https://doi.org/10.1007/s002770100377

    Article  CAS  PubMed  Google Scholar 

  18. Munteanu C, Rotariu M, Turnea M, Dogaru G, Popescu C, Spînu A, Andone I, Postoiu R, Ionescu EV, Oprea C, Albadi I, Onose G (2022) Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci 23(12): 6720. https://doi.org/10.3390/ijms23126720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fadyukova OE, Koshelev VB Effect of Hydrogen (2020) Sulfide on Deformability of Rat Erythrocytes. Bull Exp Biol Med 169(6): 664–667. https://doi.org/10.1007/s10517-020-04965-9

    Article  CAS  Google Scholar 

  20. Cortese-Krott MM (2020) Red Blood Cells as a “Central Hub” for Sulfide Bioactivity: Scavenging, Metabolism, Transport, and Cross-Talk with Nitric Oxide. Antioxid Redox Signal 33(18): 1332–1349. https://doi.org/10.1089/ars.2020.8171

    Article  CAS  PubMed  Google Scholar 

  21. Kolupaev YE, Yemets AI, Yastreb TO, Blume YB (2023) The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. Front Plant Sci 14: 1128439. https://doi.org/10.3389/fpls.2023.1128439

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bieza S, Mazzeo A, Pellegrino J, Doctorovich F (2022) H2S/Thiols, NO·, and NO·/HNO: Interactions with Iron Porphyrins. ACS Omega 7(2): 1602–1611. https://doi.org/10.1021/acsomega.1c06427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang G, Huang Y, Zhang N, Liu W, Wang C, Zhu X, Ni X (2021) Hydrogen Sulfide Is a Regulator of Hemoglobin Oxygen-Carrying Capacity via Controlling 2,3-BPG Production in Erythrocytes. Oxid Med Cell Longev 2021: 8877691. https://doi.org/10.1155/2021/8877691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo B (2016) Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol 120(2): 263–270. https://doi.org/10.1152/japplphysiol.00365.2015

    Article  CAS  PubMed  Google Scholar 

  25. Hancock SE, Maccarone AT, Poad BLJ, Trevitt AJ, Mitchell TW, Blanksby SJ (2019) Reaction of ionised steryl esters with ozone in the gas phase. Chem Phys Lipids 221: 198–206. https://doi.org/10.1016/j.chemphyslip.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  26. Bocci V, Borrelli E, Travagli V, Zanardi I (2009) The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev 29(4): 646–682. https://doi.org/10.1002/med.20150

    Article  CAS  PubMed  Google Scholar 

  27. Wen Q, Chen Q (2020) An Overview of Ozone Therapy for Treating Foot Ulcers in Patients With Diabetes. Am J Med Sci 360(2): 112–119. https://doi.org/10.1016/j.amjms.2020.05.012

    Article  PubMed  Google Scholar 

  28. Christie AE, Fontanilla TM, Roncalli V, Cieslak MC, Lenz PH (2014) Diffusible gas transmitter signaling in the copepod crustacean Calanus finmarchicus: identification of the biosynthetic enzymes of nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) using a de novo assembled transcriptome. Gen Comp Endocrinol 202: 76–86. https://doi.org/10.1016/j.ygcen.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng J, Lu X, Li H, Wang S (2022) The roles of hydrogen sulfide in renal physiology and disease states. Renal Fail 44(1): 1289–1308. https://doi.org/10.1080/0886022X.2022.2107936

    Article  CAS  Google Scholar 

  30. Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG (2019) Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 9(3): 1213–1247. https://doi.org/10.1002/cphy.c180026

    Article  PubMed  PubMed Central  Google Scholar 

  31. Colakerol A, Temiz MZ, Tavukcu HH, Aykan S, Ozsoy S, Sahan A, Kandirali E, Semercioz A (2021) Effects of ozone treatment on penile erection capacity and nitric oxide synthase levels in diabetic rats. Int J Impot Res 33(5): 1–8. https://doi.org/10.1038/s41443-020-0301-1

    Article  CAS  PubMed  Google Scholar 

  32. Orlandin JR, Pinto Santos SI, Machado LC, Neto PF, Bressan FF, Godoy Pieri NC, Recchia K, de Paula Coutinho M, Ferreira Pinto PA, Santucci A, Travagli V, Ambrosio CE (2022) Evaluation of targeted oxidative stress induced by oxygen-ozone in vitro after ischemic induction. Redox Rep 27(1): 259–269. https://doi.org/10.1080/13510002.2022.2143104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sojitra B, Bulani Y, Putcha UK, Kanwal A, Gupta P, Kuncha M, Banerjee SK (2012) Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol Cell Biochem 360(1–2): 61–69. https://doi.org/10.1007/s11010-011-1044-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Scientific Research Program of the Republic of Belarus, Contract no. 30-24/549-21.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conception, research, and preparation of the article materials, and read and approved the final version of the article before publication.

Corresponding author

Correspondence to V. V. Zinchuk.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in studies involving animals complied with ethical standards approved by legal acts of the Republic of Belarus, the principles of the Basel Declaration, and the recommendations of the Committee on Bioethics and Deontology of the educational institution Grodno State Medical University, Minutes no. 1 of January 14, 2019.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 6, pp. 760–770https://doi.org/10.31857/S0869813923060080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchuk, V.V., Biletskaya, E.S. Impact of Ozone on the Oxygen Affinity Blood Properties and Prooxidant-Antioxidant Balance under Effect of H2S-Generating System. J Evol Biochem Phys 59, 960–968 (2023). https://doi.org/10.1134/S0022093023030274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023030274

Keywords:

Navigation