Skip to main content
Log in

Immunophenotype of Mesenchymal Stem Cells Derived from Epicardial and Perivascular Adipose Tissue in Patients with Cardiovascular Diseases

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The work was aimed to evaluate the immunophenotype of adipose tissue stem cells isolated from epicardial and perivascular fat depots in patients with coronary heart disease and acquired heart disease. In cell culture obtained from epicardial adipose tissue (EAT) and perivascular adipose tissue (PVAT) (second passage) of patients with both coronary heart disease and acquired heart disease, there was a high (over 90%) expression of membrane proteins characteristic of stem cells. In addition to a major cell population, the two minor were found both in EAT and in PVAT cell cultures: (1) CD90, CD105+, CD34–/+, CD73+, CD45 (putative endothelial), and (2) CD90+, CD105, CD34, CD73, CD45 (the smallest). Thus, at early stages of cultivation, mesenchymal cells of the stromal vascular fraction isolated from EAT and PVAT express surface markers characteristic of adipose tissue stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Zuk PA, Zhu M, Mizuno H, Huang J, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  2. Robert AW, Marcon BH, Dallagiovanna B, Shigunov P (2020) Adipogenesis, Osteogenesis, and Chondrogenesis of Human Mesenchymal Stem/Stromal Cells: A Comparative Transcriptome Approach. Front Cell Dev Biol 8: 561. https://doi.org/10.3389/fcell.2020.00561

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international So. Cytotherapy 15: 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bucan A, Dhumale P, Jørgensen MG, Dalaei F, Wiinholt A, Hansen CR, Hvidsten S, Baun C, Hejbøl EK, Schrøder HD, Sørensen JA (2020) Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg and Hand Surg 54 (5): 302–311. https://doi.org/10.1080/2000656X.2020.1772799

    Article  Google Scholar 

  5. Krawczenko A, Klimczak A (2022) Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 23 (5): 2425. https://doi.org/10.3390/ijms23052425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP (2018) Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 19(8): 2200. https://doi.org/10.3390/ijms19082200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silva KR, Baptista S (2019) Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 11(3): 147–166. https://doi.org/10.4252/wjsc.v11.i3.14

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mitchell JB, Mcintosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell–Associated Markers. Stem Cells 24(2): 376–385. https://doi.org/10.1634/stemcells.2005-0234

    Article  PubMed  Google Scholar 

  9. Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9(1): 168. https://doi.org/10.1186/s13287-018-0914-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y (2019) Adipose-derived stem cells contribute to cardiovascular remodeling. Aging 11 (23): 11756—11769. https://doi.org/10.1186/s13287-018-0914-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, Kota DJ (2017) Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl Med 6(4): 1096–1108. https://doi.org/10.1002/sctm.16-0337

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan Z, Zhou Z, Zhang H, Zhao H, Song P, Wang D, Yin J, Zhao W, Xie Z, Wang F, Li Y, Guo C, Zhu F, Zhang L, Wang Q (2019) CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis. Stem Cell Res Ther 10(1): 355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang Y, Pan ZY, Zou Y, He Y, Yang PY, Tang QQ, Yin FA (2017) A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment. J Cell Mol Med 21(9): 2153–2162. https://doi.org/10.1111/jcmm.13138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X (2019) CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Internat 2019: 8717694. https://doi.org/10.1155/2019/8717694

    Article  CAS  Google Scholar 

  15. Lv XJ, Zhou GD, Liu Y, Liu X, Chen JN, Luo XS, Cao YL (2012) In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med 30(4): 826–834. https://doi.org/10.3892/ijmm.2012.1063

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Qi LJ, Guo ZK, Li H, Zuo HB, Li NN (2013) CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 44(4): 411–422. https://doi.org/10.1007/s10735-013-9492-9

    Article  CAS  PubMed  Google Scholar 

  17. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissuederived stromal cells. J Cell Physiol 189: 54–63. https://doi.org/10.1002/jcp.1138

    Article  CAS  PubMed  Google Scholar 

  18. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–663. https://doi.org/10.1161/01.CIR.0000114522.38265.61

    Article  PubMed  Google Scholar 

  19. Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4): 150–154. https://doi.org/10.1016/j.tibtech.2006.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The article was prepared within the basic research project No. 0419-2022-0002 entitled “Development of innovative models for management of cardiovascular disease risk factors and comorbidities based on the study of fundamental, clinical, and epidemiological mechanisms and healthcare management techniques in the industrial region of Siberia”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (E.G.U., O.V.G.), data collection and analysis (Yu.A.D., E.V.B., O.L.T.), experimental design (E.G.U., Yu.A.D., E.V.B., O.V.G., V.G.M.), taking adipose tissue biopsy samples during surgery (S.M.G.), writing and editing the manuscript (E.G.U.).

Corresponding author

Correspondence to E. G. Uchasova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All studies were carried out in accordance with the principles of biomedical ethics, formulated in the Declaration of Helsinki of 1964 and its subsequent updates, and approved by the Bioethics Committee of the Research Institute for Complex Issues of Cardiovascular Diseases (Kemerovo). Each human participant signed a voluntary informed consent to be involved in the study.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 3, pp. 215–222https://doi.org/10.31857/S0044452923030099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchasova, E.G., Dyleva, Y.A., Belik, E.V. et al. Immunophenotype of Mesenchymal Stem Cells Derived from Epicardial and Perivascular Adipose Tissue in Patients with Cardiovascular Diseases. J Evol Biochem Phys 59, 727–734 (2023). https://doi.org/10.1134/S0022093023030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023030079

Keywords:

Navigation