Skip to main content
Log in

Bilateral Synchronization of Hippocampal Theta Oscillations in vitro

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Hippocampal theta oscillations are pivotal for hippocampal functions of spatial navigation, learning and memory. In freely behaving animals, hippocampal theta oscillations display bilateral synchronization. Internally generated oscillations in the theta frequency range have also been described in the intact hippocampal preparation in vitro. However, it remains elusive how theta oscillations are synchronized between the left and right hippocampi. We used a preparation of the intact hippocampi interconnected by the ventral hippocampal commissure, prepared from juvenile and adult mice and rats in vitro. Local field potentials and multiunit activity were recorded using extracellular electrodes from the pyramidal cell layer and stratum radiatum of the left and right hippocampi. Neuronal network activity in the left and right hippocampi was found to be organized in theta oscillations, which strongly modulated the firing of CA1 neurons. Both neuronal activity and field potential theta oscillations demonstrated high levels of bilateral synchronization. Theta oscillations persisted on both sides, but their bilateral synchronization was abolished after surgical transection of the ventral hippocampal commissure. Thus, theta oscillations are synchronized in the left and right hippocampi in vitro, and their bilateral synchronization is provided by the ventral commissural connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 67(4): 348–359. https://doi.org/10.1016/0013-4694(87)90123-4

    Article  CAS  PubMed  Google Scholar 

  2. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31(3): 551–570. https://doi.org/10.1016/0306-4522(89)90423-5

    Article  CAS  PubMed  Google Scholar 

  3. Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116(1): 201–211. https://doi.org/10.1016/S0306-4522(02)00669-3

    Article  CAS  PubMed  Google Scholar 

  4. Buzsaki G (2015) Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25(10): 1073–1188. https://doi.org/10.1002/hipo.22488

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 75(4): 700–713. https://doi.org/10.1016/j.neuron.2012.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shinohara Y, Hosoya A, Hirase H (2013) Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus. Nat Commun 4: 1652. https://doi.org/10.1038/ncomms2658

    Article  CAS  PubMed  Google Scholar 

  7. Pfeiffer BE, Foster DJ (2015) PLACE CELLS. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349(6244): 180–183. https://doi.org/10.1126/science.aaa9633

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Toprani S, Tang Y, Vrabec T, Durand DM (2014) Mechanism of highly synchronized bilateral hippocampal activity. Exp Neurol 251: 101–111. https://doi.org/10.1016/j.expneurol.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  9. Benito N, Martin-Vazquez G, Makarova J, Makarov VA, Herreras O (2016) The right hippocampus leads the bilateral integration of gamma-parsed lateralized information. Elife 5: e16658. https://doi.org/10.7554/eLife.16658

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanaka M, Wang X, Mikoshiba K, Hirase H, Shinohara Y (2017) Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice. J Physiol 595(20): 6557–6568. https://doi.org/10.1113/JP274573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valeeva G, Nasretdinov A, Rychkova V, Khazipov R (2019) Bilateral Synchronization of Hippocampal Early Sharp Waves in Neonatal Rats. Front Cell Neurosci 13: 29. https://doi.org/10.3389/fncel.2019.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khazipov R, Holmes GL (2003) Synchronization of kainate-induced epileptic activity via GABAergic inhibition in the superfused rat hippocampus in vivo. J Neurosci 23(12): 5337–5341. https://doi.org/10.1523/JNEUROSCI.23-12-05337.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buzsaki G (2002) Theta Oscillations in the hippocampus. Neuron 33: 325–340. https://doi.org/10.1016/s0896-6273(02)00586-x

    Article  CAS  PubMed  Google Scholar 

  14. Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2): 130–138. https://doi.org/10.1038/nn.3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36: 295–312. https://doi.org/10.1146/annurev-neuro-062012-170330

    Article  CAS  PubMed  Google Scholar 

  16. Hasselmo ME (2005) What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15(7): 936–949. https://doi.org/10.1002/hipo.20116.

    Article  PubMed  Google Scholar 

  17. Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64(2): 267–80. https://doi.org/10.1016/j.neuron.2009.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shinohara Y, Hosoya A, Yahagi K, Ferecsko AS, Yaguchi K, Sik A, Itakura M, Takahashi M, Hirase H (2012) Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur J Neurosci 35(5): 702–710. https://doi.org/10.1111/j.1460-9568.2012.07993.x

    Article  PubMed  Google Scholar 

  19. Fernandez-Ruiz A, Oliva A, Nagy GA, Maurer AP, Berenyi A, Buzsaki G (2017) Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron 93: 1213–1226. https://doi.org/10.1016/j.neuron.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buzsaki G, Eidelberg E (1982) Convergence of associational and commissural pathways on CA1 pyramidal cells of the rat hippocampus. Brain Res 237(2): 283–295. https://doi.org/10.1016/0006-8993(82)90442-5

    Article  CAS  PubMed  Google Scholar 

  21. Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nature Neuroscience 12(12): 1491–1493. https://doi.org/10.1038/nn.2440

    Article  CAS  PubMed  Google Scholar 

  22. Ducharme G, Lowe GC, Goutagny R, Williams S (2012) Early Alterations in Hippocampal Circuitry and Theta Rhythm Generation in a Mouse Model of Prenatal Infection: Implications for Schizophrenia. Plos One 7(1): 8. https://doi.org/10.1371/journal.pone.0029754

    Article  CAS  Google Scholar 

  23. Jackson J, Amilhon B, Goutagny R, Bott JB, Manseau F, Kortleven C, Bressler SL, Williams S (2014) Reversal of theta rhythm flow through intact hippocampal circuits. Nature Neuroscience 17(10): 1362–1370. https://doi.org/10.1038/nn.3803

    Article  CAS  PubMed  Google Scholar 

  24. Amilhon B, Huh CYL, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S (2015) Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency. Neuron 86(5): 1277–1289. https://doi.org/10.1016/j.neuron.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  25. Khalilov I, Dzhala V, Medina I, Leinekugel X, Melyan Z, Lamsa K, Khazipov R, Ben-Ari Y (1999) Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. Eur J Neurosci 11(10): 3468–3480. https://doi.org/10.1046/j.1460-9568.1999.00768.x

    Article  CAS  PubMed  Google Scholar 

  26. Khalilov I, Esclapez M, Medina I, Aggoun D, Lamsa K, Leinekugle X, Khazipov R, Ben-Ari Y (1997) A novel in vitro preparation: the intact hippocampal formation. Neuron 19(4): 743–749. https://doi.org/10.1016/s0896-6273(00)80956-3

    Article  CAS  PubMed  Google Scholar 

  27. Khazipov R, Desfreres L, Khalilov I, Ben-Ari Y (1999) Three-independent-compartment chamber to study in vitro commissural synapses. J Neurophysiol 81(2): 921–924. https://doi.org/10.1152/jn.1999.81.2.921

    Article  CAS  PubMed  Google Scholar 

  28. Leinekugel X, Khalilov I, Ben-Ari Y, Khazipov R (1998) Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J Neurosci 18(16): 6349–6357. https://doi.org/10.1523/JNEUROSCI.18-16-06349.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khalilov I, Holmes GL, Ben Ari Y (2003) In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 6(10): 1079–1085. https://doi.org/10.1038/nn1125

    Article  CAS  PubMed  Google Scholar 

  30. Khalilov I, Le Van QM, Gozlan H, Ben Ari Y (2005) Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron 48(5): 787–796. https://doi.org/10.1016/j.neuron.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  31. Nardou R, Ben-Ari Y, Khalilov I (2009) Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus. J Neurophysiol 101(6): 2878–2888. https://doi.org/10.1152/jn.90761.2008

    Article  CAS  PubMed  Google Scholar 

  32. Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G (1995) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5(1): 78–90. https://doi.org/10.1002/hipo.450050110

    Article  CAS  PubMed  Google Scholar 

  33. Buzsaki G, Czopf J, Kondakor I, Kellenyi L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365(1): 125–137. https://doi.org/10.1016/0006-8993(86)90729-8

    Article  CAS  PubMed  Google Scholar 

  34. Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8(3): 244–261. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Agency (Project No. ANR-21-CE16-0005-01 “DevHippo”), and as part of the Priority 2030 research program at Kazan Federal University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (R.Kh.), data collection (I.Kh.), data processing (A.G.), writing and editing the manuscript (R.Kh., A.G., I.Kh.).

Corresponding author

Correspondence to R. Khazipov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed with the involvement of animals complied with ethical standards approved by legal acts of the Russian Federation, the principles of the Basel Declaration, and recommendations of the Directive 2010/63/EU for animal experiments. All animal use protocols were approved by the French National Institute of Health and Medical Research (APAFIS #16992- 2020070612319346 v2) and Local Ethics Committee of Kazan Federal University (#24/ 22.09.2020).

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 3, pp. 207–214https://doi.org/10.31857/S004445292303004X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilov, I., Gainutdinov, A. & Khazipov, R. Bilateral Synchronization of Hippocampal Theta Oscillations in vitro. J Evol Biochem Phys 59, 719–726 (2023). https://doi.org/10.1134/S0022093023030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023030067

Keywords:

Navigation