Skip to main content
Log in

In vitro Effects of Cold Shock on the Size and Activity of Nucleated Erythrocytes in Scorpaena porcus (Linnaeus, 1758)

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The in vitro effect of cold shock on nucleated erythrocytes of the benthic scorpionfish Scorpaena porcus L. was studied. Blood samples were exposed to 22°C (control group) and 4°C (experimental group) for 3 h. Cold shock had no significant impact on vital characteristics of scorpionfish erythrocytes. The cells retained the integrity of cytoplasmic membranes, mitochondrial potential, and levels of oxidative processes, as evidenced by constant values of propidium iodide, rhodamine 123, and 2',7'-dichlorodihydrofluorescein diacetate fluorescence intensity. Main changes were concerned with erythrocyte shape and nucleus functional activity. While the red blood cells became more rounded, the nucleus size increased, leading to a higher nuclear–cytoplasmic ratio and a decrease in the fluorescence intensity of cells labeled with a nuclear dye SYBR Green I. Supposedly, this was due to cytoskeletal alterations and activation of transcriptional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73: 1491–1530. https://doi.org/10.1111/j.1095-8649.2008.02061.x

    Article  Google Scholar 

  2. Reid CH, Patrick PH, Rytwinski T, Taylor JJ, Willmor WG, Reesor B, Cooke SJ (2022) An updated review of cold shock and cold stress in fish. J Fish Biol 100: 1102–1137. https://doi.org/10.1111/jfb.15037

    Article  PubMed  Google Scholar 

  3. Koakoski G, Oliveira TA, da Rosa JGS, Fagundes M, Kreutz LC, Barcellos LJG (2012) Divergent time course of cortisol response to stress in fish of different ages. Physiol Behav 106(2):129–132. https://doi.org/10.1016/j.physbeh.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  4. He J, Qiang J, Yang H, Xu P, Zhu ZX, Yang RQ (2015) Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress. J Thermal Biol 53: 90–97. https://doi.org/10.1016/j.jtherbio.2015.08.010

    Article  CAS  Google Scholar 

  5. Bai Y, Liu H, Huang B, Wagle M, Guo S (2016) Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci17(1): 1–12. https://doi.org/10.1186/s12868-016-0298-z

    Article  CAS  Google Scholar 

  6. Mattioli CC, Takata R, de Oliveira Paes Leme F, Costa DC, Luz RK (2020) Response of juvenile Lophiosilurus alexandri to osmotic and thermic shock. Fish Physiol Biochem 46(1): 51–61. https://doi.org/10.1007/s10695-019-00696-5

    Article  CAS  PubMed  Google Scholar 

  7. Inoue LAKA, Moraes G, Iwama GK, Afonso LOB (2008) Physiological stress responses in the warm-water fish matrinxã (Brycon amazonicus) subjected to a sudden cold shock. Acta Amazonica 38:603–609. https://doi.org/10.1590/S0044-59672008000400002

    Article  CAS  Google Scholar 

  8. Adloo MN, Soltanian S, Hafeziyeh M, Ghadimi N (2015) Cortisol and glucose responses in juvenile striped catfish subjected to a cold shock. Veterinary Sci Devel 5(2):78–81.

    CAS  Google Scholar 

  9. Tseng YC, Liu ST, Hu MY, Chen RD, Lee JR, Hwang PP (2014) Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish. Front Zool 11(1): 1–20.

    Article  Google Scholar 

  10. Choi CY, Kim TH, Choi YJ, Choi JY, Oh SY, Kim BS (2017) Effects of various wavelengths of light on physiological stress and non-specific immune responses in black rockfish Sebastes schlegelii subjected to water temperature change. Fish Sci 83(6): 997–1006. https://doi.org/10.1007/s12562-017-1136-7

    Article  CAS  Google Scholar 

  11. Giacomin M, Eom J, Schulte PM, Wood CM (2019) Acute temperature effects on metabolic rate, ventilation, diffusive water exchange, osmoregulation, and acid–base status in the Pacific hagfish (Eptatretus stoutii). J Compar Physiol B 189(1): 17–35. https://doi.org/10.1007/s00360-018-1191-0

    Article  CAS  Google Scholar 

  12. Chang CH, Zhou XW, Wang YC, Lee TH (2020) Differential effects of hypothermal stress on lactate metabolism in fresh water-and seawater-acclimated milkfish, Chanos chanos. Compar Biochem Physiol Part A: Mol and Integr Physiol 248: 110744. https://doi.org/10.1016/j.cbpa.2020.110744

    Article  CAS  Google Scholar 

  13. Bacchetta C, Ale A, Rossi AS, Karakachoff M, Cazenave J (2020) Effects of cold stress on juvenile Piaractus mesopotamicus and the mitigation by β-carotene. J Thermal Biol 88: 102497. https://doi.org/10.1016/j.jtherbio.2019.102497

    Article  CAS  Google Scholar 

  14. Hwang GC, Watabe S, Hashimoto K (1990) Changes in carp myosin ATPase induced by temperature acclimation. J Comp Physiol B 160(3): 233–239. https://doi.org/10.1007/bf00302588

    Article  CAS  Google Scholar 

  15. Vanlandeghem MM, Wahl DH, Suski CD (2010) Physiological responses of largemouth bass to acute temperature and oxygen stressors. Fishe Managem Ecol 17(5): 414–425. https://doi.org/10.1111/j.1365-2400.2010.00740.x

    Article  Google Scholar 

  16. Jun Q, Hong Y, Hui W, Didlyn KM, Jie H, Pao X (2015) Physiological responses and HSP70 mRNA expression in GIFT tilapia juveniles, Oreochromis niloticus under short-term crowding. Aquacult Res 46(2): 335–345. https://doi.org/10.1111/are.12189

    Article  CAS  Google Scholar 

  17. Mihailovich M, Militti C, Gabaldo T, Gebauer F (2010) Eukaryotic cold shock domain proteins: Highly versatile regulators of gene expression. Bioessays 32: 109–118. https://doi.org/10.1002/bies.200900122

    Article  CAS  PubMed  Google Scholar 

  18. Sharma J, Singh SP, Chakrabarti R (2017) Effect of temperature on digestive physiology, immune-modulatory parameters, and expression level of Hsp and LDH genes in Catla catla (Hamilton, 1822). Aquaculture 479: 134–141. https://doi.org/10.1016/j.aquaculture.2017.05.031

    Article  CAS  Google Scholar 

  19. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295(2): 173–183. https://doi.org/10.1016/S0378-1119(02)00687-X

    Article  CAS  PubMed  Google Scholar 

  20. Soldatov AA (2005) Peculiarities of organization and functioning of the fish red blood system. Journal of Evolutionary Biochemistry and Physiology 41(3): 272–281.

    Article  CAS  Google Scholar 

  21. Khrushchov NG, Lange MA, Zolotova TE, Bessonov AV (1993) Characteristics of erythroid sprout cells in mirror carp (perspectives of use in estimating the fish physiological-state). Izvestiya akademii nauk seriya biologicheskaya 1: 83–87.

    Google Scholar 

  22. Fischer U, Ototake M, Nakanishi T (1998) Life span of circulating blood cells in ginbuna crucian carp (Carassius auratus langsdorfii). Fish and Shellfish Immunology 8(5): 339–349. https://doi.org/10.1006/fsim.1998.0144

    Article  Google Scholar 

  23. Phillips MC, Moyes CD, Tufts BL (2000) The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells. J Exp Biol 203(6): 1039–1045. https://doi.org/10.1242/jeb.203.6.1039

    Article  CAS  PubMed  Google Scholar 

  24. Cossins AR, Gibson JS (1997) Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J Exp Biol 200(2): 343–352. https://doi.org/10.1242/jeb.200.2.343

    Article  CAS  PubMed  Google Scholar 

  25. Boutilier RG, Ferguson RA (1989) Nucleated red cell function: metabolism and pH regulation. Canad J Zool 67(12): 2986–2993. https://doi.org/10.1139/z89-421

    Article  CAS  Google Scholar 

  26. Andreeva AYu, Soldatov AA (2012) Changes in the volume of nuclear erythrocytes of scorpaena under conditions of external hypoxia (in vitro experiments). Dopovіdі Nacіonal’noї akademії nauk Ukraїni 10: 149–153. (In Russ).

    Google Scholar 

  27. Soldatov AA, Kukhareva TA, Andreeva AY, Parfenova IA, Rychkova VN, Zin’kova DS (2017) The functional morphology of erythrocytes of the black scorpion fish Scorpaena porcus (Linnaeus, 1758) (Scorpaeniformes: Scorpaenidae) during hypoxia. Russ J Marine Biol 43(5): 368–373. https://doi.org/10.1134/S1063074017050091

    Article  Google Scholar 

  28. Svetovidov AN (1964) Ryby Chernogo morya [Fish of the Black Sea]. Nauka, M. (In Russ).

    Google Scholar 

  29. Silvestrova KP, Zatsepin AG, Myslenkov SA (2017) Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics. Oceanology 57(4): 469–477. https://doi.org/10.1134/S0001437017040178

    Article  Google Scholar 

  30. Soldatov AA (2005) Physiological aspects of effects of urethane anesthesia on the organism of marine fishes. Hydrobiological J 41(1): 113–126. https://doi.org/10.1615/HydrobJ.v41. i1.130

    Article  Google Scholar 

  31. Zolotnickaya RP (1987) Methods of hematological research. Laboratory research methods in the clinic (reference book). Medicina, M. 106–148. (In Russ).

    Google Scholar 

  32. Tiihonen K, Nikinmaa M (1991) Substrate utilization by carp (Cyprinus carpio) erythrocytes. J Exp Biol 161: 509–551.

    Article  CAS  Google Scholar 

  33. Girish V, Vijayalakshmi A (2004) Affordable image analysis using NIH Image/ImageJ. Indian J Cancer 41(1): 47.

    Article  CAS  PubMed  Google Scholar 

  34. Houchin DN, Munn JI, Parnell BL (1958) A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area. Blood 13(12): 1185–1191.

    Article  CAS  PubMed  Google Scholar 

  35. Tashke K (1980) Introduction to quantitative cyto-histological morphology. Izd-vo AN SRR, Buharest. (In Russ).

    Google Scholar 

  36. Chizhevskij AL (1959) Structural analysis of moving blood. AN SSSR. (In Russ).

    Google Scholar 

  37. Buhariwalla HEC, Osmond EM, Barnes KR, Cozzi RRF, Robertson GN, Marshall WS (2012) Control of ion transport by mitochondrion-rich chloride cells of eurythermic teleost fish: cold shock vs. cold acclimation. Comp Biochem Physiol Part A: Mol Integrat Physiol 162(3): 234–244. https://doi.org/10.1016/j.cbpa.2012.03.010

    Article  CAS  Google Scholar 

  38. Kukhareva TA, Soldatov AA (2016) Functional morphology of blood erythroid cells in Neogobius melanostomus P. during cell differentiation. J Evol Biochem Physiol 52(3): 261–266. https://doi.org/10.1134/S0022093016030091

    Article  Google Scholar 

  39. Goncharova EI, Pinaev GP (1988) Proteins of the cytoskeleton of erythrocytes. Citologiya 30(1):5–18. (In Russ).

    CAS  Google Scholar 

  40. Bogusławska D, Machnicka B, Hryniewicz-Jankowska A, Czogalla A (2014) Spectrin and phospholipids—the current picture of their fascinating interplay. Cellular and Molecular Biology Letters 19(1): 158–179. https://doi.org/10.2478/s11658-014-0185-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong P (2004) A hypothesis on the role of the electrical charge of haemoglobin in regulating the erythrocyte shape. Medical hypotheses 62(1): 124–129.

    Article  CAS  PubMed  Google Scholar 

  42. Vera C, Lao J, Hamelberg D, Sung L A (2005) Mapping the tropomyosin isoform 5 binding site on human erythrocyte tropomodulin: further insights into E-Tmod/TM5 interaction. Arch Biochem Biophys 444(2): 130–138. https://doi.org/10.1016/j.abb.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Soldatov AA (2003) Effects of temperature, pH, and organic phosphates on fish hemoglobins. J Evol Biochem Physiol 39(2): 159–168.

    Article  CAS  Google Scholar 

  44. Jin X, Yue S, Wells KS, Singer VL (1994) Sybr Green (Tm)-1-a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66(2): A159–A159.

    Google Scholar 

  45. Said AliK, Ferencz Á, Nemcsók J, Hermesz E (2010) Expressions of heat shock and metallothionein genes in the heart of common carp (Cyprinus carpio): effects of temperature shock and heavy metal exposure. Acta Biol Hungar 61(1): 10–23. https://doi.org/10.1556/abiol.61.2010.1.2

    Article  Google Scholar 

  46. Ji L, Jiang K, Liu M, Wang B, Han L, Zhang M, Wang L (2016) Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus. Chinese J Oceanol Limnol 34(3): 430–440. https://doi.org/10.1007/s00343-016-4367-z

    Article  CAS  Google Scholar 

  47. Hung I, Hsiao YC, Sun HS, Chen TM, Lee SJ (2016) MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics17(1): 1–18. https://doi.org/10.1186/s12864-016-3239-4

    Article  CAS  Google Scholar 

  48. Lu Y, Nie M, Wang L, Xiong Y, Wang F, Wang L, You F (2018) Energy response and modulation of AMPK pathway of the olive flounder Paralichthys olivaceus in low-temperature challenged. Aquaculture 484: 205–213. https://doi.org/10.1016/j.aquaculture.2017.11.031

    Article  CAS  Google Scholar 

  49. Pinto R, Ivaldi C, Reyes M, Doyen C, Mietton F, Mongelard F, Bouvet P (2005) Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Letters 579(25): 5553–5558. https://doi.org/10.1016/j.febslet.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  50. Cheng CH, Ye CX, Guo ZX, Wang AL (2017) Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immunol 64: 137–145. https://doi.org/10.1016/j.fsi.2017.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to E.S. Kladchenko for her methodological assistance.

Funding

This work was implemented under the governmental program 121041400077-1.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (A.A.S., N.E.Sh.), experimenting and data collection (N.E.Sh., Yu.V.B.), data processing (N.E.Sh., Yu.V.B.), writing and editing the manuscript (A.A.S., N.E.Sh.).

Corresponding author

Correspondence to N. E. Shalagina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional guidelines for the care and use of laboratory animals were observed.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 3, pp. 167–176https://doi.org/10.31857/S0044452923030087.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalagina, N.E., Soldatov, A.A. & Bogdanovich, Y.V. In vitro Effects of Cold Shock on the Size and Activity of Nucleated Erythrocytes in Scorpaena porcus (Linnaeus, 1758). J Evol Biochem Phys 59, 676–686 (2023). https://doi.org/10.1134/S002209302303002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302303002X

Keywords:

Navigation