Skip to main content
Log in

Profile of Molecular Markers of Cardiac Fibrosis in Rats Exposed to Different Doxorubicin Doses

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The study is devoted to investigating the profile of molecular markers of fibrosis in Wistar rats exposed to different doses of doxorubicin. Forty male Wistar rats weighing 260 ± 19 g were divided into 4 groups: one control and three experimental groups corresponding to different cumulative doses of doxorubicin (5, 10, 15 mg/kg, i.p.), each administered 6 times every third day. After reaching cumulative doses, animals were under observation for 2 months. At the end of the observation period, rat hearts were taken for molecular and morphological studies. Histological, echocardiographic and molecular analyses revealed doxorubicin-induced dose-dependent lesions in the left ventricular myocardium. In all three experimental groups, TGF-β expression level was indistinguishable from the control. At the same time, animals treated with a maximum cumulative dose of doxorubicin (15 mg/kg) retained increased expression of type I and II collagen, ET-1, FGF4 and TNF-α, which suggested, on the one hand, an incomplete formation of fibrous connective tissue and, on the other hand, an active involvement of these markers of cardiac fibrosis in inflammatory processes against the background of pronounced cardiotoxic effect of the chemotherapy drug. In animals administered with a medium doxorubicin dose (10 mg/kg), expression levels of the above molecular markers did not differ from those in the control group, whereas the treatment with a minimum dose (5 mg/kg) led to a decrease in the expression of type I and II collagen, ET-1 and TNF-α, but an increase in FGF4 expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Markham MJ, Wachter K, Agarwal N, Bertagnolli MM, Chang SM, Dale W, Diefenbach CSM, Rodriguez-Galindo C, George DJ, Gilligan TD, Harvey RD, Johnson ML, Kimple RJ, Knoll MA, LoConte N, Maki RG, Meisel JL, Meyerhardt JA, Pennell NA, Rocque GB, Sabel MS, Schilsky RL, Schneider BJ, Tap WD, Uzzo RG, Westin SN (2020) Clinical Cancer Advances 2020: Annual report on progress against cancer from the American Society of Clinical oncology. J Clin Oncol 38: 1081–1101. https://doi.org/10.1200/JCO.19.03141

    Article  PubMed  Google Scholar 

  2. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal 8: e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7

    Article  Google Scholar 

  3. Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, MacGillivray T, McKillop G, Mirsadraee S, Payne J, Fox KAA, Henriksen P, Newby DE, Semple SIK (2012) Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction early clinical experience. Circ Cardiovasc Imaging 5: 559–565. https://doi.org/10.1161/CIRCIMAGING.112.974907

    Article  PubMed  Google Scholar 

  4. Oudard S (2013) Progress in emerging therapies for advanced prostate cancer. Cancer Treat Rev 39: 275–289. https://doi.org/10.1016/j.ctrv.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Weingart SN, Zhang L, Sweeney M, Hassett M (2018) Chemotherapy medication errors. Lancet Oncol 19: e191–e199. https://doi.org/10.1016/S1470-2045(18)30094-9

    Article  PubMed  Google Scholar 

  6. Springfeld C, Jäger D, Büchler MW, Strobel O, Hackert T, Palmer DH, Neoptolemos JP (2019) Chemotherapy for pancreatic cancer. Press Medicale 48: e159–e174. https://doi.org/10.1016/j.lpm.2019.02.025

    Article  Google Scholar 

  7. Knezevic CE, Clarke W (2020) Cancer Chemotherapy: The Case for Therapeutic Drug Monitoring. Ther Drug Monit 42: 6–19. https://doi.org/10.1097/FTD.0000000000000701

    Article  PubMed  Google Scholar 

  8. Renu K, Abilash VG, Tirupathi TP, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy—An update. Eur J Pharmacol 818: 241–253. https://doi.org/10.1016/j.ejphar.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  9. Hole LD, Larsen TH, Fossan KO, Limé F, Schjøtt J (2013) A short-time model to study relevant indices of cardiotoxicity of doxorubicin in the rat. Toxicol Mech Methods 23: 412–418. https://doi.org/10.3109/15376516.2013.773391

    Article  CAS  PubMed  Google Scholar 

  10. Towbin JA, Bowles NE (2002) The failing heart. Nature 415: 227–233. https://doi.org/10.1038/415227a

    Article  CAS  PubMed  Google Scholar 

  11. Kharina VI, Berezhnova TA, Reznikova KM, Brezdynyuk AD (2017) A method for detecting the initial cardiotoxic effects of doxorubicin. Bulletin of new medical technologies 4: 165–170. https://doi.org/10.12737/article_5a32124941da88.60854778

    Article  Google Scholar 

  12. Mawad W, Mertens L, Pagano JJ, Riesenkampff E, Reichert MJE, Mital S, Kantor PF, Greenberg M, Liu P, Nathan PC, Grosse-Wortmann L (2021) Effect of anthracycline therapy on myocardial function and markers of fibrotic remodelling in childhood cancer survivors. Eur Heart J Cardiovasc Imaging 22: 435–442. https://doi.org/10.1093/ehjci/jeaa093

    Article  PubMed  Google Scholar 

  13. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307: 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YJ, Huang H, Liu Y, Kong B, Wang G (2019) MD-1 deficiency accelerates myocardial inflammation and apoptosis in doxorubicin-induced cardiotoxicity by activating the TLR4/MAPKs/nuclear factor kappa B (NF-kB) signaling pathway. Med Sci Monit 25: 7898–7907. https://doi.org/10.12659/MSM.919861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu HY, Sanada S, Matsuzaki T, Liao Y, Okuda K, Yamato M, Tsuchida S, Araki R, Asano Y, Asanuma H, Asakura M, French BA, Sakata Y, Kitakaze M, Minamino T (2016) Chemical endoplasmic reticulum chaperone alleviates doxorubicin-induced cardiac dysfunction. Circ Res 118: 798–809. https://doi.org/10.1161/CIRCRESAHA.115.307604

    Article  CAS  PubMed  Google Scholar 

  16. Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G (1998) The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 12: 541–552. https://doi.org/10.1096/fasebj.12.7.541

    Article  CAS  PubMed  Google Scholar 

  17. Pan JA, Tang Y, Yu JY, Zhang H, Zhang JF, Wang CQ, Gu J (2019) miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death Dis 10: 1–15. https://doi.org/10.1038/s41419-019-1901-x

    Article  CAS  Google Scholar 

  18. Miklishanskaya SV, Mazur NA, Shestakova NV (2017) Mechanisms for the formation myocardial fibrosis in norm and in certain cardiovascular diseases, how to diagnose it. Russ Med Acad Contin post-graduate Stud 12: 75–81. https://doi.org/10.21518/2079-701X-2017-12-75-81

    Article  Google Scholar 

  19. Aharinejad S, Krenn K, Paulus P, Schäfer R, Zuckermann A, Grimm M, Abraham D (2005) Differential role of TGF-β 1/bFGF and ET-1 in graft fibrosis in heart failure patients. Am J Transplant 5: 2185–2192. https://doi.org/10.1111/j.1600-6143.2005.01006.x

    Article  CAS  PubMed  Google Scholar 

  20. Pan X, Chen Z, Huang R, Yao Y, Ma G (2013) Transforming Growth Factor β1 Induces the Expression of Collagen Type I by DNA Methylation in Cardiac Fibroblasts. PLoS One 8: 1–8. https://doi.org/10.1371/journal.pone.0060335

    Article  CAS  Google Scholar 

  21. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL (2020) Inflammation in Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol 75: 1324–1340. https://doi.org/10.1016/j.jacc.2020.01.014

    Article  PubMed  Google Scholar 

  22. Teplyakov AT, Shilov SN, Popova AA, Berezikova EN, Grakova EV, Neupokoeva MN, Kopeva KV, Ratushnyak ET, Stepachev EI (2020) The role of pro-inflammatory cytokines in the development of anthracycline-induced heart failure. Clinical Studies 35: 66–74. https://doi.org/10.29001/2073-8552-2020-35-2-66-74

    Article  Google Scholar 

  23. Zhao W, Wang X, Sun KH, Zhou L (2018) Α-Smooth Muscle Actin Is Not a Marker of Fibrogenic Cell Activity in Skeletal Muscle Fibrosis. PLoS One 13: 1–16. https://doi.org/10.1371/journal.pone.0191031

    Article  CAS  Google Scholar 

  24. Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128: 45–53. https://doi.org/10.1172/JCI93557

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bazylev VV, Kanaeva TV (2020) The role of matrix metalloproteinases in myocardial remodeling. CardioSomatics 11: 22–28. https://doi.org/10.26442/22217185.2020.3.200374

    Article  Google Scholar 

  26. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ (2018) Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 14: 1645–1657. https://doi.org/10.7150/ijbs.28103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Medeiros-Lima DJM, Carvalho JJ, Tibirica E, Borges JP, Matsuura C (2019) Time course of cardiomyopathy induced by doxorubicin in rats. Pharmacol Reports 71: 583–590. https://doi.org/10.1016/j.pharep.2019.02.013

    Article  CAS  Google Scholar 

  28. Lončar-Turukalo T, Vasić M, Tasić T, Mijatović G, Glumac S, Bajić D, Japunžić-Žigon N (2015) Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol Meas 36: 727–739. https://doi.org/10.1088/0967-3334/36/4/727

    Article  PubMed  Google Scholar 

  29. Merlet N, Piriou N, Rozec B, Grabherr A, Lauzier B, Trochu JN, Gauthier C (2013) Increased Beta2-Adrenoceptors in Doxorubicin-Induced Cardiomyopathy in Rat. PLoS One 8: 1–15. https://doi.org/10.1371/journal.pone.0064711

    Article  CAS  Google Scholar 

  30. Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG (2021) Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol 12: 1–12. https://doi.org/10.3389/fphar.2021.670479

    Article  CAS  Google Scholar 

  31. Rolski F, Błyszczuk P (2020) Complexity of TNF-α signaling in heart disease. J Clin Med 9: 1–25. https://doi.org/10.3390/jcm9103267

    Article  CAS  Google Scholar 

  32. Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP (2007) Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115: 1398–1407. https://doi.org/10.1161/CIRCULATIONAHA.106.643585

    Article  CAS  PubMed  Google Scholar 

  33. Shi-wen X, Kennedy L, Renzoni EA, Bou-Gharios G, Du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endothelin is a downstream mediator of profibrotic responses to transforming growth factor β in human lung fibroblasts. Arthritis Rheum 56: 4189–4194. https://doi.org/10.1002/art.23134

    Article  CAS  PubMed  Google Scholar 

  34. Podyacheva E, Toropova Y (2022) SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 13: 1–23. https://doi.org/10.3389/fphar.2022.1035387

    Article  CAS  Google Scholar 

  35. Sabirov LF, Frolova EB, Mukhametshina GA, Safargalieva LKh, Mukhitova EI (2012) Dilated cardiomyopathy. Clinical Case 5: 202–208. https://doi.org/10.1016/B978-0-323-47870-0.00022-2

    Article  Google Scholar 

  36. Ahmedova DM, Hojakuliyev BG (2014) Value of Volume Fraction of Collagen in Development of Myocardium Remodeling At the Patients With Inflammatory Cardiomyopathy. Eurasian Hear J 1: 109–112. https://doi.org/10.38109/2225-1685-2014-1-109-112

    Article  Google Scholar 

  37. Naiditsch AM (2006) Left ventricular structural heterogeneity and myocardial remodelling. Bulletin of Siberian Medicine 5: 38–45. https://doi.org/10.20538/1682-0363-2006-1-38-45

    Article  Google Scholar 

  38. Shishkova AV, Adonina EV, Duplyakov DV, Suslina EA, Ksenofontova LV (2018) Course and outcome of dilated cardiomyopathy. Cardiol News, Opin Training 6: 92–96. https://doi.org/10.24411/2309-1908-2018-13010

    Article  Google Scholar 

  39. Schiller M, Javelaud D, Mauviel A (2004) TGF-β-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 35: 83–92. https://doi.org/10.1016/j.jdermsci.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  40. Hafizi S, Wharton J, Chester AH, Yacoub MH (2004) Profibrotic effects of endothelin-1 via the ET A receptor in cultured human cardiac fibroblasts. Cell Physiol Biochem 14: 285–292. https://doi.org/10.1159/000080338

    Article  CAS  PubMed  Google Scholar 

  41. Neri Serneri GG, Cecioni I, Vanni S, Paniccia R, Bandinelli B, Vetere A, Janming X, Bertolozzi I, Boddi M, Lisi GF, Sani G, Modesti PA (2000) Selective upregulation of cardiac endothelin system in patients with ischemic but not idiopathic dilated cardiomyopathy: Endothelin-1 system in the human failing heart. Circ Res 86: 377–385. https://doi.org/10.1161/01.res.86.4.377

    Article  Google Scholar 

  42. Remuzzi G, Perico N, Benigni A (2002) New therapeutics that antagonize endothelin: Promises and frustrations. Nat Rev Drug Discov 1: 986–1001. https://doi.org/10.1038/nrd962

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka R, Umemura M, Narikawa M, Hikichi M, Osaw K, Fujita T, Yokoyama U, Ishigami T, Tamura K, Ishikawa Y (2020) Reactive fibrosis precedes doxorubicin-induced heart failure through sterile inflammation. ESC Hear Fail 7: 588–603. https://doi.org/10.1002/ehf2.12616

    Article  Google Scholar 

  44. Sun KH, Chang Y, Reed NI, Sheppard D (2016) α-smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol—Lung Cell Mol Physiol 310: L824–L836. https://doi.org/10.1152/ajplung.00350.2015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the governmental assignment of the Ministry of Health of the Russian Federation (Creation of new drugs for the treatment and prevention of doxorubicin-induced cardiomyopathy).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (Ya.G.Т., Е.Yu.P.); data collection (Е.Yu.P., Т.V.Sh., D.D.A., M.S.D., R.I.Т., Yu.V.Ch., М.О.М., S.А.O.); data analysis and interpretation (Е.Yu.P., Т.V.Sh., D.D.А.); writing and editing the manuscript (Е.Yu.P., Yu.V.Ch., Ya.G.Т.).

Corresponding author

Correspondence to E. Yu. Podyacheva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional principles of animal care and use were followed. The experimental protocol was approved by the Bioethics Committee at the Almazov Scientific Research Centre of the Ministry of Health of the Russian Federation, IACUC (protocol No. 20-09PZ#V2).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 2, pp. 121–130https://doi.org/10.31857/S0044452923020043.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podyacheva, E.Y., Shmakova, T.V., Andreeva, D.D. et al. Profile of Molecular Markers of Cardiac Fibrosis in Rats Exposed to Different Doxorubicin Doses. J Evol Biochem Phys 59, 359–368 (2023). https://doi.org/10.1134/S0022093023020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023020059

Keywords:

Navigation