Skip to main content
Log in

Structural Optimization of an α-Hairpinin Blocking Potassium Channels KV1.3

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Obtaining compounds with specificity for certain isoforms of ion channels is a significant problem of curent physiology and pharmacology. In a series of papers, we have shown that the α-hairpinin fold can serve as a template for the rational design of peptide ligands of potassium channels. Here, we used molecular modeling to optimize the structure of the previously obtained Tk-hefu-10 peptide, a selective KV1.3 channel blocker, with a half-maximal inhibitory concentration (IC50) of ≈150 nM. Molecular dynamics simulation of the Tk-hefu-10–KV1.3 complex provided information on the interaction of individual amino acid residues of the peptide and channel, and the analysis of these interactions made it possible to propose amino acid substitutions in the structure of Tk-hefu-10 to increase its affinity. Novel Tk-hefu-12 peptide is a truncated analog of Tk-hefu-10 by one residue with five substitutions; it is characterized by an IC50 value of ≈70 nM against KV1.3. In addition, there are no methionine residues in the structure of Tk-hefu-12, which makes it possible to obtain Tk-hefu peptides using cyanogen bromide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Hille B (2001) Ion Channels of Excitable Membranes, 3rd ed. Sinauer Associates; Inc, Sunderland; Mass.

    Google Scholar 

  2. Feske S, Wulff H, Skolnik EY (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol 33: 291–353. https://doi.org/10.1146/ANNUREV-IMMUNOL-032414-112212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111: 1703–1713. https://doi.org/10.1172/JCI16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25: 280–289. https://doi.org/10.1016/j.tips.2004.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus H-G, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103: 17414–17419. https://doi.org/10.1073/pnas.0605136103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valverde P, Kawai T, Taubman MA (2004) Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res 19: 155–164. https://doi.org/10.1359/JBMR.0301213

    Article  CAS  PubMed  Google Scholar 

  7. Berkut AA, Usmanova DR, Peigneur S, Oparin PB, Mineev KS, Odintsova TI, Tytgat J, Arseniev AS, Grishin EV, Vassilevski AA (2014) Structural similarity between defense peptide from wheat and scorpion neurotoxin permits rational functional design. J Biol Chem 289: 14331–14340. https://doi.org/10.1074/jbc.M113.530477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berkut AA, Chugunov AO, Mineev KS, Peigneur S, Tabakmakher VM, Krylov NA, Oparin PB, Lihonosova AF, Novikova EV, Arseniev AS, Grishin EV, Tytgat J, Efremov RG, Vassilevski AA (2019) Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. J Biol Chem 294(48): 18349–18359. https://doi.org/10.1074/jbc.RA119.010494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tabakmakher VM, Gigolaev AM, Peigneur S, Krylov NA, Tytgat J, Chugunov AO, Vassilevski AA, Efremov RG (2021) Potassium channel blocker crafted by α-hairpinin scaffold engineering. Biophys J 120: 2471–2481. https://doi.org/10.1016/j.bpj.2021.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gigolaev AM, Lushpa VA, Pinheiro-Junior EL, Tabakmakher VM, Peigneur S, Ignatova AA, Feofanov AV, Efremov RG, Mineev KS, Tytgat J, Vassilevski AA (2022) Artificial pore blocker acts specifically on voltage-gated potassium channel isoform KV1.6. J Biol Chem 298(11):102467. https://doi.org/10.1016/J.JBC.2022.102467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyukmanova EN, Shenkarev ZO, Shulepko MA, Paramonov AS, Chugunov AO, Janickova H, Dolejsi E, Dolezal V, Utkin YN, Tsetlin VI, Arseniev AS, Efremov RG, Dolgikh DA, Kirpichnikov MP (2015) Structural insight into specificity of interactions between nonconventional three-finger weak toxin from Naja kaouthia (WTX) and muscarinic acetylcholine receptors. J Biol Chem 290 (39): 23616–23630. https://doi.org/10.1074/jbc.M115.656595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chugunov AO, Volynsky PE, Krylov NA, Nolde DE, Efremov RG (2016) Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 6: 33112. https://doi.org/10.1038/srep33112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  14. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  15. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma 78(8): 1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  Google Scholar 

  16. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  17. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1): 014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  18. Pyrkov TV, Efremov RG (2007) A fragment-based scoring function to re-rank ATP docking results. Int J Mol Sci 8: 1083–1094. https://doi.org/10.3390/i8111083

    Article  CAS  PubMed Central  Google Scholar 

  19. Pyrkov TV, Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: A web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25: 1201–1202. https://doi.org/10.1093/bioinformatics/btp111

    Article  CAS  PubMed  Google Scholar 

  20. McCoy J, LaVallie E (2001) Expression and Purification of Thioredoxin Fusion Proteins. In: Current Protocols in Molecular Biology. John Wiley and Sons, Inc., Hoboken; NJ; USA. 16.8.1-16.8.14.

    Google Scholar 

  21. Gasparian ME, Ostapchenko VG, Schulga AA, Dolgikh DA, Kirpichnikov MP (2003) Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Protein Expr Purif 31(1): 133–139. https://doi.org/10.1016/S1046-5928(03)00159-1

    Article  CAS  PubMed  Google Scholar 

  22. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11: 56. https://doi.org/10.1186/1475-2859-11-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuzmenkov AI, Sachkova MY, Kovalchuk SI, Grishin EV, Vassilevski AA (2016) Lachesana tarabaevi, an expert in membrane-Active toxins. Biochem J 473: 2495–2506. https://doi.org/10.1042/BCJ20160436

    Article  CAS  PubMed  Google Scholar 

  24. Peigneur S, Billen B, Derua R, Waelkens E, Debaveye S, Béress L, Tytgat J (2011) A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties. Biochem Pharmacol 82(1): 81–90. https://doi.org/10.1016/j.bcp.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee A, Lee A, Campbell E, MacKinnon R (2013) Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. Elife 21(2): e00594. https://doi.org/10.7554/eLife.00594

    Article  CAS  Google Scholar 

  26. Tabakmakher VM, Krylov NA, Kuzmenkov AI, Efremov RG, Vassilevski AA (2019) Kalium 2.0, a comprehensive database of polypeptide ligands of potassium channels. Sci Data 61(6): 1–8. https://doi.org/10.1038/s41597-019-0074-x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to Olaf Pongs for providing the plasmid pCI-neo-KV1.3.

Funding

This work was supported by the Russian Science Foundation (project no. 20-44-01015; electrophysiology) and the Russian Foundation for Basic Research (project no. 20-34-90158; peptide production).

Author information

Authors and Affiliations

Authors

Contributions

A.M.G. and A.A.V. planned the study. V.M.T. performed molecular modeling. A.M.G. performed biochemical experiments and obtained recombinant peptides. S.P. performed electrophysiological experiments. A.A.V. supervised the biochemical experiments. J.T. supervised the electrophysiological experiments. A.M.G., V.M.T. and A.A.V. wrote the article.

Corresponding author

Correspondence to A. A. Vassilevski.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study strictly followed the International Guiding Principles for Biomedical Research Involving Animals of the World Health Organization and the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Strasbourg, 18.III.1986). The study was conducted in accordance with the standards of the Guide for the Care and Use of Laboratory Animals (8th edition, Institute for Laboratory Animal Research). X. laevis frogs were used in Toxicology and Pharmacology, KU Leuven, under the license LA1210239, which was approved by the Ethical Committee for animal experiments of KU Leuven (P186/2019).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 1, pp. 109–118https://doi.org/10.31857/S0869813923010041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigolaev, A.M., Tabakmakher, V.M., Peigneur, S. et al. Structural Optimization of an α-Hairpinin Blocking Potassium Channels KV1.3. J Evol Biochem Phys 59, 192–199 (2023). https://doi.org/10.1134/S0022093023010167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023010167

Keywords:

Navigation