Skip to main content
Log in

Effects of Phosphorylation of Tropomyosin with Cardiomyopathic Mutations on Calcium Regulation of Myocardial Contraction

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Mutations in the TPM1.1 gene lead to the development of cardiomyopathies. It has been shown that in cardiomyopathies there is a change in the degree of tropomyosin phosphorylation (Tpm). We investigated the molecular mechanisms of the effect of Tpm phosphorylation with mutations associated with dilated (K15N) and hypertrophic (I172T, E180G, and I284V) cardiomyopathies on calcium regulation of actin–myosin interaction using myosin from the atria and ventricles in an in vitro motility assay. Tpm with S283D substitution was used as the phosphorylated form. We found that phosphorylation differently affected regulatory properties of Tpm with mutations depending on their location in the molecule. The phosphorylation did not affect the properties of Tpm with mutations at the N- and C-terminal regions and increased the calcium sensitivity of thin filaments containing Tpm with substitutions in the central part of the molecule. Since hypertrophic cardiomyopathy is accompanied by an increase in the calcium sensitivity, the phosphorylation of the Tpm molecule carrying cardiomyopathic mutations can aggravate the violation of the contractility of the heart chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Towbin JA (2014) Inherited cardiomyopathies. Circ J 78: 2347–2356. https://doi.org/10.1253/circj.cj-14-0893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy α-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 33: 1815–1828. https://doi.org/10.1006/jmcc.2001.1445

    Article  CAS  PubMed  Google Scholar 

  3. Rajan S, Ahmed RP, Jagatheesan G, Petrashevskaya N, Boivin GP, Urboniene D, Arteaga GM, Wolska BM, Solaro RJ, Liggett SB, Wieczorek DF (2007) Dilated cardiomyopathy mutant tropomyosin mice develop cardiac dysfunction with significantly decreased fractional shortening and myofilament calcium sensitivity. Circ Res 101: 205–214. https://doi.org/10.1161/CIRCRESAHA.107.148379

    Article  CAS  PubMed  Google Scholar 

  4. Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A, Boivin G, Arteaga GM, Solaro RJ, Liggett SB, Wieczorek DF Rescue of tropomyosin-induced familial hypertrophic cardiomyopathy mice by transgenesis. (2007) Am J Physiol Heart Circ Physiol 293: 949–958. https://doi.org/10.1152/ajpheart.01341.2006

  5. Bai F, Wang L, Kawai M (2013) A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 34: 295–310. https://doi.org/10.1007/s10974-013-9343-z

    Article  CAS  PubMed  Google Scholar 

  6. Mahmod M, Raman B, Chan K, Sivalokanathan S, Smillie RW, Samat AHA, Ariga R, Dass S, Ormondroyd E, Watkins H, Neubauer S (2022) Right ventricular function declines prior to left ventricular ejection fraction in hypertrophic cardiomyopathy. J Cardiovasc Magn 24: 36. https://doi.org/10.1186/s12968-022-00868-y

    Article  Google Scholar 

  7. Zhang Y, Zhu Y, Zhang M, Liu J, Wu G, Wang J, Sun X, Wang D, Jiang W, Xu L, Kang L, Song L (2022) Implications of structural right ventricular involvement in patients with hypertrophic cardiomyopathy. Eur Heart J Qual Care Clin Outcomes 9 (1): 34–41. https://doi.org/10.1093/ehjqcco/qcac008

    Article  CAS  PubMed  Google Scholar 

  8. Steen H, Giusca S, Montenbruck M, Patel AR, Pieske B, Florian A, Erley J, Kelle S, Korosoglou G (2021) Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. J Cardiovasc Magn Reson 23: 45. https://doi.org/10.1186/s12968-021-00711-w

    Article  PubMed  PubMed Central  Google Scholar 

  9. Farhad H, Seidelmann SB, Vigneault D, Abbasi SA, Yang E, Day SM, Colan SD, Russell MW, Towbin J, Sherrid MV, Canter CE, Shi L, Jerosch-Herold M, Bluemke DA, Ho C, Neilan TG (2017) Left atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. J Cardiovasc Magn Reson 19: 107. https://doi.org/10.1186/s12968-017-0420-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chung H, Kim Y, Park CH, Kim IS, Kim JY, Min PK, Yoon YW, Kim TH, Lee BK, Hong BK, Rim SJ, Kwon HM, Lee KA, Choi EY (2021) Contribution of sarcomere gene mutations to left atrial function in patients with hypertrophic cardiomyopathy. Cardiovasc Ultrasound 19: 4. https://doi.org/10.1186/s12947-020-00233-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Śpiewak M, Kłopotowski M, Mazurkiewicz Ł, Kowalik E, Petryka-Mazurkiewicz J, Miłosz-Wieczorek B, Klisiewicz A, Witkowski A, Marczak M (2020) Predictors of right ventricular function and size in patients with hypertrophic cardiomyopathy. Sci Rep 10: 21054. https://doi.org/10.1038/s41598-020-78245-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro RJ, Wieczorek DF (2001) A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol. 33: 1815–1828. https://doi.org/10.1006/jmcc.2001.1445

    Article  CAS  PubMed  Google Scholar 

  13. Rajan S, Jagatheesan G, Petrashevskaya N, Biesiadecki BJ, Warren CM, Riddle T, Liggett S, Wolska BM, Solaro RJ, Wieczorek DF (2019) Tropomyosin pseudo-phosphorylation results in dilated cardiomyopathy. J Biol Chem 294: 2913–2923. https://doi.org/10.1074/jbc.RA118.004879

    Article  CAS  PubMed  Google Scholar 

  14. Ferrantini C, Coppini R, Pioner JM, Gentile F, Tosi B, Mazzoni L, Scellini B, Piroddi N, Laurino A, Santini L, Spinelli V, Sacconi L, De Tombe P, Moore R, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Tesi C, Poggesi C (2017) Pathogenesis of hypertrophic cardiomyopathy is mutation rather than disease specific: a comparison of the cardiac troponin T E163R and R92Q mouse models. J Am Heart Assoc 6: e005407. https://doi.org/10.1161/JAHA.116.005407

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pioner JM, Vitale G, Gentile F, Scellini B, Piroddi N, Cerbai E, Olivotto I, Tardiff J, Coppini R, Tesi C, Poggesi C, Ferrantini C (2022) Genotype-driven pathogenesis of atrial fibrillation in hypertrophic cardiomyopathy: the case of different TNNT2 mutations. Front Physiol 13: 864547. https://doi.org/10.3389/fphys.2022.864547

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keane S, Fabre A, Keane D (2021) Characterization of atrial histology in a patient with hypertrophic cardiomyopathy: Possible evidence of a primary atrial myopathy. HeartRhythm Case Rep 7: 413–417. https://doi.org/10.1016/j.hrcr.2021.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kopylova GV, Berg VY, Kochurova AM, Matyushenko AM, Bershitsky SY, Shchepkin DV (2022) The effects of the tropomyosin cardiomyopathy mutations on the calcium regulation of actin-myosin interaction in the atrium and ventricle differ. Biochem Biophys Res Commun 588: 29–33. https://doi.org/10.1016/j.bbrc.2021.12.051

    Article  CAS  PubMed  Google Scholar 

  18. Schulz EM, Correll RN, Sheikh HN, Lofrano-Alves MS, Engel PL, Newman G, Schultz Jel J, Molkentin JD, Wolska BM, Solaro RJ, Wieczorek DF (2012) Tropomyosin dephosphorylation results in compensated cardiac hypertrophy. J Biol Chem 287: 44478–44489. https://doi.org/10.1074/jbc.M112.402040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulz EM, Wilder T, Chowdhury SA, Sheikh HN, Wolska BM, Solaro RJ, Wieczorek DF (2013) Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem 288: 28925–28935. https://doi.org/10.1074/jbc.M113.466466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solaro RJ (2002) Modulation of cardiac myofilament activity by protein phosphorylation. In: Page E, Fozzard HA, Solaro RJ (eds) Handbook of Physiology: Section 2; The Cardiovascular System. NY: Oxford University Press, New York, pp 264–300.

    Google Scholar 

  21. Marston S (2022) Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A. J Muscle Res Cell Motil 43: 1. https://doi.org/10.1007/s10974-022-09630-4

    Article  CAS  Google Scholar 

  22. Ito M, Okamoto R, Ito H, Zhe Y, Dohi K (2022) Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 45: 40–52. https://doi.org/10.1038/s41440-021-00733-y

    Article  CAS  PubMed  Google Scholar 

  23. Markandran K, Yu H, Song W, Lam DTUH, Madathummal MC, Ferenczi MA (2021) Functional and molecular characterisation of heart failure progression in mice and the role of myosin regulatory light chains in the recovery of cardiac muscle function. Int J Mol Sci 23: 88. https://doi.org/10.3390/ijms23010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biesiadecki BJ, Westfall MV (2019) Troponin I modulation of cardiac performance: Plasticity in the survival switch. Arch Biochem Biophys 664: 9–14. doi: 10.1016/j.abb.2019.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Westfall MV (2016) Contribution of post-translational phosphorylation to sarcomere-linked cardiomyopathy phenotypes. Front Physiol 7: 407. https://doi.org/10.3389/fphys.2016.00407

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yadav S, Szczesna-Cordary D (2017) Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 9: 57–64. https://doi.org/10.1007/s12551-017-0248-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mak A, Smillie LB, Barany M (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75: 3588–3592. https://doi.org/10.1073/pnas.75.8.3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wieczorek DF (2022) Implications of tropomyosin phosphorylation in normal and cardiomyopathic hearts, Medical Research Archives, [online] 10(8) sep. 2022. https://doi.org/10.18103/mra.v10i8.3103

  29. Heeley DH (1994) Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T. Eur J Biochem 221: 129–137. https://doi.org/10.1111/j.1432-1033.1994.tb18721.x

    Article  CAS  PubMed  Google Scholar 

  30. Heeley DH, Watson MH, Mak AS, Dubord P, Smillie LB (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle alpha alpha-tropomyosin. J Biol Chem 264: 2424–2430.

    Article  CAS  PubMed  Google Scholar 

  31. Lehman W, Medlock G, Li XE, Suphamungmee W, Tu AY, Schmidtmann A, Ujfalusi Z, Fischer S, Moore JR, Geeves MA, Regnier M (2015) Phosphorylation of Ser283 enhances the stiffness of the tropomyosin head-to-tail overlap domain. Arch Biochem Biophys 571: 10–15. https://doi.org/10.1016/j.abb.2015.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sano K, Maeda K, Oda T, Maéda Y (2000) The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle alpha-tropomyosin. J Biochem 127: 1095–1102. https://doi.org/10.1093/oxfordjournals.jbchem.a022703

    Article  CAS  PubMed  Google Scholar 

  33. Rao VS, Marongelli EN, Guilford WH (2009) Phosphorylation of tropomyosin extends cooperative binding of myosin beyond a single regulatory unit. Cell Motil Cytoskeleton 66: 10–23. https://doi.org/10.1002/cm.20321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kopylova GV, Matyushenko AM, Berg VY, Levitsky DI, Bershitsky SY, Shchepkin DV (2021) Acidosis modifies effects of phosphorylated tropomyosin on the actin-myosin interaction in the myocardium. J Muscle Res Cell Motil 42: 343–353. https://doi.org/10.1007/s10974-020-09593-4

    Article  CAS  PubMed  Google Scholar 

  35. Nixon BR, Liu B, Scellini B, Tesi C, Piroddi N, Ogut O, Solaro RJ, Ziolo MT, Janssen PM, Davis JP, Poggesi C, Biesiadecki BJ (2013) Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 535: 30–38. https://doi.org/10.1016/j.abb.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Nefedova VV, Koubassova NA, Borzova VA, Kleymenov SY, Tsaturyan AK, Matyushenko AM, Levitsky DI (2021) Tropomyosin pseudo-phosphorylation can rescue the effects of cardiomyopathy-associated mutations. Int J Biol Macromol 166: 424–434. https://doi.org/10.1016/j.ijbiomac.2020.10.201.

    Article  CAS  PubMed  Google Scholar 

  37. Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85 (Pt B): 55–71. https://doi.org/10.1016/0076-6879(82)85009-x

    Article  CAS  PubMed  Google Scholar 

  38. Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol 274: 1048–1053. https://doi.org/10.1152/ajpheart.1998.274.3.H1048

    Article  Google Scholar 

  39. Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Enzymol 85 (Pt B): 164–181. https://doi.org/10.1016/0076-6879(82)85020-9

    Article  CAS  PubMed  Google Scholar 

  40. Potter JD (1982) Preparation of troponin and its subunits. Methods Enzymol 85 (Pt B): 241–263. https://doi.org/10.1016/0076-6879(82)85024-6

    Article  CAS  PubMed  Google Scholar 

  41. Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83: 6272–6276. https://doi.org/10.1073/pnas.83.17.6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matyushenko AM, Shchepkin DV, Kopylova GV, Popruga KE, Artemova NV, Pivovarova AV, Bershitsky SY, Levitsky DI (2017) structural and functional effects of cardiomyopathy-causing mutations in the troponin T-binding region of cardiac tropomyosin. Biochemistry 56: 250–259. https://doi.org/10.1021/acs.biochem.6b00994

    Article  CAS  PubMed  Google Scholar 

  43. Mashanov GI, Molloy JE (2007) Automatic detection of single fluorophores in live cells. Biophys J 92: 2199–2211. https://doi.org/10.1529/biophysj.106.081117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schulz EM, Wieczorek DF. Tropomyosin de-phosphorylation in the heart: what are the consequences? J Muscle Res Cell Motil 34: 239–246. doi: 10.1007/s10974-013-9348-7

  45. Warren CM, Arteaga GM, Rajan S, Ahmed RP, Wieczorek DF, Solaro RJ (2008) Use of 2-D DIGE analysis reveals altered phosphorylation in a tropomyosin mutant (Glu54Lys) linked to dilated cardiomyopathy. Proteomics 8: 100–105. https://doi.org/10.1002/pmic.200700772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang W, Szczesna-Cordary D (2015) Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations. J Muscle Res Cell Motil 36: 433–445. https://doi.org/10.1007/s10974-015-9423-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D (2019) Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 286: 151–168. https://doi.org/10.1111/febs.14702

    Article  CAS  PubMed  Google Scholar 

  48. Yuan CC, Muthu P, Kazmierczak K, Liang J, Huang W, Irving TC, Kanashiro-Takeuchi RM, Hare JM, Szczesna-Cordary D (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci USA 112: E4138–E4146. https://doi.org/10.1073/pnas.1505819112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rababa’h A, Singh S, Suryavanshi SV, Altarabsheh SE, Deo SV, McConnell BK (2014) Compartmentalization role of A-kinase anchoring proteins (AKAPs) in mediating protein kinase A (PKA) signaling and cardiomyocyte hypertrophy. Int J Mol Sci 16: 218–229. https://doi.org/10.3390/ijms16010218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Wang BZ, Kim M, Nash TR, Liu B, Rao J, Lock R, Tamargo M, Soni RK, Belov J, Li E, Vunjak-Novakovic G, Fine B (2022) STK25 inhibits PKA signaling by phosphorylating PRKAR1A. Cell Rep 40: 111203. https://doi.org/10.1016/j.celrep.2022.111203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oliveira-Santos A, Dagda M, Burkin DJ (2022) Sunitinib inhibits STAT3 phosphorylation in cardiac muscle and prevents cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 31: 2358–2369. https://doi.org/10.1093/hmg/ddac042

    Article  CAS  PubMed  Google Scholar 

  52. Dmour BA, Miftode RS, Iliescu Halitchi D, Anton-Paduraru DT, Iliescu Halitchi CO, Miftode IL, Mitu O, Costache AD, Stafie CS, Costache II (2021) Latest insights into mechanisms behind atrial cardiomyopathy: It is not always about ventricular function. Diagnostics (Basel) 11: 449. https://doi.org/10.3390/diagnostics11030449

  53. Packer M (2020) Characterization, pathogenesis, and clinical implications of inflammation-related atrial myopathy as an important cause of atrial fibrillation. J Am Heart Assoc 9: e015343. https://doi.org/10.1161/JAHA.119.015343

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carlisle MA, Fudim M, DeVore AD, Piccini JP (2019) Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail 7: 447–456. https://doi.org/10.1016/j.jchf.2019.03.005

    Article  PubMed  Google Scholar 

  55. Thierfelder L, MacRae C, Watkins H, Tomfohrde J, Williams M, McKenna W, Bohm K, Noeske G, Schlepper M, Bowcock A (1993) A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci USA 90: 6270–6274. https://doi.org/10.1073/pnas.90.13.6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2003) Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108: 445–451. https://doi.org/10.1161/01.CIR.0000080896.52003.DF

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank V.Y. Berg for her assistance in the in vitro motility assay experiments.

Funding

This work was funded by the Russian Foundation for Basic Research grants 20-04-00130 (S.B.), State Program 122022200089-4 (S.B.), and State Program 122041100022-3 (A.M.). The work was performed using the equipment of the Shared Research Center of Scientific Equipment of IIP UB RAS and the equipment of the Shared-Access Equipment Centre “Industrial Biotechnology” of Federal Research Center “Fundamentals of Biotechnology” of the RAS.

Author information

Authors and Affiliations

Authors

Contributions

G.V.K., A.M.M., S.Y.B., and D.V.S. conceptualized the work; A.M.M. expressed of tropomyosins; G.V.K., A.M.K., and D.V.S. performed in vitro motility experiments and analyzed data; G.V.K., S.Y.B., and D.V.S. wrote the manuscript; all authors read and approved the manuscript.

Corresponding author

Correspondence to G. V. Kopylova.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, G.V., Matyushenko, A.M., Kochurova, A.M. et al. Effects of Phosphorylation of Tropomyosin with Cardiomyopathic Mutations on Calcium Regulation of Myocardial Contraction. J Evol Biochem Phys 58 (Suppl 1), S82–S91 (2022). https://doi.org/10.1134/S0022093022070092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070092

Keywords:

Navigation