Skip to main content
Log in

A Comparative Analysis of the Distribution of Different Photosensitizers in Paramecium caudatum and Amoeba proteus

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The accumulation of different photosensitizers (PSs) (Radachlorin, Rose Bengal, Coproporphyrin) in ciliates Paramecium caudatum and amoebae Amoeba proteus were evaluated both by observations on living cells and on the fixed material, using fluorescence and confocal laser scanning microscopy. The above single-celled eukaryotic organisms shared similar intracellular distribution patterns of different PSs with mammalian cells and thus can be used as model objects at the initial stages of preclinical studies of various substances, potential PSs. Some methodological recommendations for the identification of intracellular compartments, where PSs selectively accumulate, were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Carrasco-Pujante J, Bringas C, Malaina I, Fedetz M, Martínez L, Pérez-Yarza G, Dolores Boyano M, Berdieva M, Goodkov A, López JI, Knafo S, De la Fuente IM (2021) Associative Conditioning Is a Robust Systemic Behavior in Unicellular Organisms: An Interspecies Comparison. Front Microbiol 12: 707086. https://doi.org/10.3389/fmicb.2021.707086

    Article  Google Scholar 

  2. Petrishchev NN, Papayan GV, Chistyakova LV, Struy AV, Faizullina DR (2018) Effect of Photobiomodulation by Red and Infrared Laser Radiation on Motility of Paramecium caudatum. J Evol Biochem Physiol 54: 457–464. https://doi.org/10.1134/s0022093018060054

    Article  Google Scholar 

  3. Herman P, Kiss A, Fábián I, Kalmár J, Nagy G (2021) In situ remediation efficacy of hybrid aerogel adsorbent in model aquatic culture of Paramecium caudatum exposed to Hg(II). Chemosphere 275: 130019. https://doi.org/10.1016/j.chemosphere.2021.130019

    Article  CAS  Google Scholar 

  4. Benov L (2015) Photodynamic therapy: current status and future directions Med Princ Pract 24: 14–28. https://doi.org/10.1159/2F000362416

  5. Nonell S, Flors C (2016) Singlet oxygen: applications in biosciences and nanosciences. Royal Society of Chemistry, Cambridge; England.

    Book  Google Scholar 

  6. Ogilby PR (2010) Singlet oxygen: There is indeed something new under the sun. Chem Soc Rev 39: 3181–3209. https://doi.org/10.1039/b926014p

    Article  CAS  Google Scholar 

  7. Sztandera K, Gorzkiewicz M, Wang X, Boye S, Appelhans D, Klajnert- Maculewicz B (2022) pH-stable polymersome as nanocarrier for post-loaded rose bengal in photodynamic therapy. Colloids and Surfaces B: Biointerfaces 217: 112662. https://doi.org/10.1016/j.colsurfb.2022.112662

    Article  CAS  Google Scholar 

  8. Krechetov SP, Miroshkina AM, Yakovtseva MN, Mochalova EN, Babenyshev AV, Maslov IV, Loshkarev AA, Krasnyuk II (2021) Radachlorin-Containing Microparticles for Photodynamic Therapy. Adv Pharm Bull 11: 458–468. https://doi.org/10.34172/apb.2021.053

    Article  CAS  Google Scholar 

  9. Sonneborn TM (1970) Methods in paramecium research. In: Methods of Cell Physiology. AcademicPress Inc, New York 4: 241–339.

    Google Scholar 

  10. Prescott DM, Carrier R (1964). Experimental procedures and cultural methods for Euplotes eurystomus and Amoeba proteus. In Methods in cell biology. Acad Press, New York–London 1: 85–95.

    CAS  Google Scholar 

  11. Mirzaei H, Djavid GE, Hadizadeh M, Jahanshiri-Moghadam M, Hajian P (2015) The efficacy of Radachlorin-mediated photodynamic therapy in human hepatocellular carcinoma cells. J Photochem Photobiol B Biol 142: 86–91. https://doi.org/10.1016/j.jphotobiol.2014.11.007

    Article  CAS  Google Scholar 

  12. Vargas F, Díaz Y, Yartsev V, Marcano A, Lappa A (2004) Photophysical properties of novel PDT photosensitizer Radachlorin in different media Propiedades fotofísicas del nuevo fotosensibilizador Radaclorin en diferentes medios. Sci J from Exp Fac Sci 12: 70–77.

    CAS  Google Scholar 

  13. Bagrov IV, Belousova IM, Gorelov SI, Dobrun MV, Kiselev VM, Kislyakov IM, Kris’ko AV, Kris’ko TK (2017) A comparative study of the processes of generation of singlet oxygen upon irradiation of aqueous preparations on the basis of chlorin e6 and coproporphyrin III. Opt Spectrosc 122: 163–167. https://doi.org/10.1134/S0030400X17020060

    Article  CAS  Google Scholar 

  14. Murav’eva TD, Dadeko AV, Kiselev VM, Kris’ko TK, Kislyakov IM, Kris’ko AV, Starodubtsev AM, Bagrov IV, Belousova IM, Ponomarev GV (2018) Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins. J Opt Technol 85: 709–721. https://doi.org/10.1364/JOT.85.000709

    Article  Google Scholar 

  15. Redmond RW, Gamlin JN (1999) A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules. Photochem Photobiol 70: 391–475.

    Article  CAS  Google Scholar 

  16. Chang CC, Yang YT, Yang JC, Wu HDa, Tsai T (2008) Absorption and emission spectral shifts of rose bengal associated with DMPC liposomes. Dye Pigment 79: 170–175. https://doi.org/10.1016/j.dyepig.2008.02.003

    Article  CAS  Google Scholar 

  17. Panzarini E, Inguscio V, Dini L (2011) Overview of cell death mechanisms induced by rose bengal acetate-photodynamic therapy. Int J Photoenergy 2011: 11. https://doi.org/10.1155/2011/713726

    Article  Google Scholar 

  18. Faizullina DR, Sukhorukova EG, Yukina GYu, Petrishchev NN, Korneva EA (2020) Changes in microcirculation and structural components of the skin under photodynamic effects. Regional blood circulation and microcirculation 19(1): 73–81. https://doi.org/10.24884/1682-6655-2020-19-1-73-81

    Article  Google Scholar 

  19. Grishacheva TG, Belik AG, Tsyganenko VN, Struy AV, Mikhailova IA, Petrishchev NN (2018) Photoreactivity of mesenteric microvessels. Russian Journal of Physiology 104(2): 174–183. (In Russ).

    Google Scholar 

  20. Wachter E, Dees C, Harkins J, Fisher W, Scott T (2002) Functional Imaging of Photosensitizers using Multiphoton Microscopy. In: Multiphoton Microscopy in the Biomedical Sciences II 4620: 143–147. https://doi.org/10.1117/12.470688

    Article  CAS  Google Scholar 

  21. Theodossiou T, Hothersall JS, Woods EA, Okkenhaug K, Jacobson J, MacRobert AJ (2003) Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells. Cancer research 63(8): 1818–1821.

    CAS  Google Scholar 

  22. Panzarini E, Tenuzzo B, Palazzo F, Chionna A, Dini L (2006) Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate. J Photochem Photobiol B Biol 83: 39–47. https://doi.org/10.1016/j.jphotobiol.2005.11.014

    Article  CAS  Google Scholar 

  23. Biswas R, Moon JH, Ahn JC (2014) Chlorin e6 derivative radachlorin mainly accumulates in mitochondria, lysosome and endoplasmic reticulum and shows high affinity toward tumors in nude mice in photodynamic therapy. Photochem Photobiol 90: 1108–1118. https://doi.org/10.1111/php.12273

    Article  CAS  Google Scholar 

  24. Zhikhoreva AA, Belashov AV, Belyaeva TN, Salova AV, Litvinov IK, Semenova LV, Vasyutinskii OS (2022) Comparative analysis of radachlorin accumulation, localization and photobleaching in three cell lines by means of holographic and fluorescent microscopy. Photodiagnosis and photodynamic therapy 39: 102973. https://doi.org/10.1016/j.pdpdt.2022.102973

    Article  CAS  Google Scholar 

  25. Amaroli A, Ravera S, Parker S, Panfoli I, Benedicenti A, Benedicenti S (2015) The protozoan, Paramecium primaurelia, as a non-sentient model to test laser light irradiation: the effects of an 808 nm infrared laser diode on cellular respiration. Alternatives to Laboratory Animals 43(3): 155–162. https://doi.org/10.1177/026119291504300305

    Article  Google Scholar 

  26. Croce AC, Wyroba E, Bottiroli G (1992) Distribution and retention of rose bengal and disulphonated aluminium phthalocyanine: a comparative study in unicellular eukaryote. Journal of Photochemistry and Photobiology 16(3–4): 318–330. https://doi.org/10.1016/1011-1344(92)80019-R

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The ciliates Paramecium caudatum (clone 39-9) were obtained from the “Centre for Culture Collection of Microorganisms” of the St. Petersburg State University Research Park.

Author information

Authors and Affiliations

Authors

Contributions

N.N.P.—conceptualization, research consulting; L.V.Ch.—experimental design, data collection and processing, protist culturing; D.R.F.—data collection; S.V.Sh.—CLSM studies, data processing; all co-authors—writing and editing the manuscript.

Corresponding author

Correspondence to N. N. Petrishchev.

Ethics declarations

ETHICAL STANDARDS

All applicable international, national and/or institutional guidelines for the care and use of animals have been observed.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 6, pp. 498–506https://doi.org/10.31857/S004445292206002X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakova, L.V., Faizullina, D.R., Shmakov, S.V. et al. A Comparative Analysis of the Distribution of Different Photosensitizers in Paramecium caudatum and Amoeba proteus. J Evol Biochem Phys 58, 1720–1729 (2022). https://doi.org/10.1134/S0022093022060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022060059

Keywords:

Navigation