Skip to main content
Log in

Comparative Study of the Behavior of Wistar Rats, Dopamine Transporter Heterozygous Rats and Rats after Long-Term Ethanol Consumption in the Morris Water Maze

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Dysfunctions of the dopaminergic system are the basis of many neuropsychiatric diseases. A promising model for research is a model of moderate increase in DA system activity: DAT-HET rats heterozygous for the dopamine transporter gene knockout. They are characterized by higher motor activity and cognitive impairments, which allow them to be considered as a possible model of pathologies such as attention deficit hyperactivity disorder. It is known that chronic ethanol consumption leads to dopamine depletion, particularly in the striatum. We suggest that chronically ethanol-consuming rats may serve as a model of moderate hypodopaminergic state, as opposed to DAT-HET rats. The aim of this study was to explore the effect of such modulations of the dopaminergic system on learning and spatial navigation in the Morris water maze. A decrease in dopamine levels compared to DAT-HET rats was found only in rats with a higher level of ethanol preference. In the Morris water maze, the DAT-HET rats showed an unproductive strategy of thigmotaxis significantly more than the ethanol-consuming rats, which led to slower learning. It is possible that the observed impairments in the learning of the spatial task are related to their stress vulnerability, manifested, in particular, by a high level of defecation in the pool. Rats after the chronic ethanol exposure demonstrated a delayed purposeful search for a platform in comparison with the control group, which was expressed in less time spent in the target sector at the beginning of each learning session. The study allows us to conclude that the moderate multidirectional modulation of the activity of the dopaminergic system does not lead to the pronounced impairment in spatial navigation in the Morris water maze, but reduces cognitive flexibility evidenced by longer periods of using unproductive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Retailleau A, Boraud T (2014) The Michelin red guide of the brain: role of dopamine in goal-oriented navigation. Front Syst Neurosci 8: 32. https://doi.org/10.3389/fnsys.2014.00032

    Article  PubMed  PubMed Central  Google Scholar 

  2. Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD (2016) Dopamine transporter mutant animals: a translational perspective. J Neurogenet 30(1): 5–15. https://doi.org/10.3109/01677063.2016.1144751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, Messa G, Emanuele M, Esposito A, Dorofeikova M, Budygin EA, Mus L, Efimova EV, Niello M, Espinoza S, Sotnikova TD, Hoener MC, Laviola G, Fumagalli F, Adriani W, Gainetdinov RR (2018) Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci 38(8): 1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gainetdinov AR, Fesenko ZS, Khismatullina ZR (2020) Behavioural Changes in Heterozygous Rats by Gene Knockout of the Dopamine Transporter (DAT). J Biomed 16 (1): 82–88. https://doi.org/10.33647/2074-5982-16-1-82-88

    Article  Google Scholar 

  5. Penner MR, Mizumori SJ (2012) Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 96(1): 96–135. https://doi.org/10.1016/j.pneurobio.2011.08.010. Epub 2011 Sep 21.

    Article  PubMed  Google Scholar 

  6. Braun AA, Graham DL, Schaefer TL, Vorhees CV, Williams MT (2012) Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem 97(4): 402–408. https://doi.org/10.1016/j.nlm.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lavoie AM, Mizumori SJ (1994) Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res 638: 157–168. https://doi.org/10.1016/0006-8993(94)90645-9

    Article  CAS  PubMed  Google Scholar 

  8. Grinevich VP, Krupitsky EM, Gainetdinov RR, Budygin EA (2021) Linking Ethanol-Addictive Behaviors With Brain Catecholamines: Release Pattern Matters. Front Behav Neurosci 15: 795030. https://doi.org/10.3389/fnbeh.2021.795030.; PMCID: PMC8716449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mcbride WJ, Murphy JM, Lumeng L, Li TK (1990) Serotonin, Dopamine and Gaba Involvement in Alcohol Drinking of Selectively Bred Rats. Alcohol 7: 199–205.

    Article  CAS  PubMed  Google Scholar 

  10. Howard EC, Schier CJ, Wetzel JS, Duvauchelle CL, Gonzales RA (2008) The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration. Neuroscience 154(3): 1042–1053. https://doi.org/10.1016/j.neuroscience.2008.04.014

    Article  CAS  PubMed  Google Scholar 

  11. Budygin EA, Mathews TA, Lapa GB, Jones SR (2005) Local effects of acute ethanol on dopamine neurotransmission in the ventral striatum in C57BL/6 mice. Eur J Pharmacol 523(1–3): 40–45. https://doi.org/10.1016/j.ejphar.2005.09.006. Epub 2005 Oct 14.

    Article  CAS  PubMed  Google Scholar 

  12. Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR (2006) No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 60(4): 288–294. https://doi.org/10.1002/syn.20301.

    Article  CAS  PubMed  Google Scholar 

  13. Carroll MR, Rodd ZA, Murphy JM, Simon JR (2006) Chronic ethanol consumption increases dopamine uptake in the nucleus accumbens of high alcohol drinking rats. Alcohol 40(2): 103–109. https://doi.org/10.1016/j.alcohol.2006.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rothblat DS, Rubin E, Schneider JS (2001) Effects of chronic alcohol ingestion on the mesostriatal dopamine system in the rat. Neurosci Lett 300: 63–66. https://doi.org/10.1007/s00213-007-0812-1

    Article  CAS  PubMed  Google Scholar 

  15. Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, Bartlett SE (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcoholism Clin Exp Res 32 (10): 1816–1823. https://doi.org/10.1111/j.1530-0277.2008.00753.x

    Article  CAS  Google Scholar 

  16. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn and Motivat 12(2): 239–260. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  17. Walker QD, Ray R, Kuhn CM (2006) Sex differences in neurochemical effects of dopaminergic drugs in rat striatum. Neuropsychopharmacology 31(6): 1193–1202. https://doi.org/10.1038/sj.npp.1300915

    Article  CAS  PubMed  Google Scholar 

  18. Haile CN, Kosten TA (2001) Differential effects of D1- and D2-like compounds on cocaine self-administration in Lewis and Fischer 344 inbred rats. J Pharmacol Exp Ther 299(2): 509–518.

    CAS  PubMed  Google Scholar 

  19. Dluzen DE, Ji J, McDermott JL (2010) Age-related changes in nigrostriatal dopaminergic function in heterozygous mutant dopamine transporter knock-out mice. Neurosci Lett 476(2): 66–69. https://doi.org/10.1016/j.neulet.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Bahi A, Dreyer JL (2019) No effect of sex on ethanol intake and preference after dopamine transporter (DAT) knockdown in adult mice. Psychopharmacology (Berl) 236(4): 1349–1365. https://doi.org/10.1007/s00213-018-5144-9

  21. Bahi A (2020) Dopamine transporter gene expression within the nucleus accumbens plays important role in the acquisition and reinstatement of ethanol-seeking behavior in mice. Behav Brain Res 381: 112475. https://doi.org/10.1016/j.bbr.2020.112475

    Article  CAS  PubMed  Google Scholar 

  22. Strother WN, Lumeng L, Li TK, McBride WJ (2005) Dopamine and serotonin content in select brain regions of weanling and adult alcohol drinking rat lines. Pharmacol Biochem Behav 80(2): 229–237. https://doi.org/10.1016/j.pbb.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Kashem MA, Ahmed S, Sarker R, Ahmed EU, Hargreaves GA, McGregor IS (2012) Long-term daily access to alcohol alters dopamine-related synthesis and signaling proteins in the rat striatum. Neurochem Int 61(8): 1280–1288. https://doi.org/10.1016/j.neuint.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  24. Annett LE, McGregor A, Robbins TW (1989) The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res 31(3): 231–242. https://doi.org/10.1016/0166-4328(89)90005-3

    Article  CAS  PubMed  Google Scholar 

  25. Illiano P, Bigford GE, Gainetdinov RR, Pardo M (2020) Rats Lacking Dopamine Transporter Display Increased Vulnerability and Aberrant Autonomic Response to Acute Stress. Biomolecules 10(6): 842. https://doi.org/10.3390/biom10060842

    Article  CAS  PubMed Central  Google Scholar 

  26. Adinolfi A, Zelli S, Leo D, Carbone C, Mus L, Illiano P, Alleva E, Gainetdinov RR, Adriani W (2019) Behavioral characterization of DAT-KO rats and evidence of asocial-like phenotypes in DAT-HET rats: The potential involvement of norepinephrine system. Behav Brain Res 359: 516–527. https://doi.org/10.1016/j.bbr.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  27. Santín LJ, Rubio S, Begega A, Arias JL (2000) Effects of chronic alcohol consumption on spatial reference and working memory tasks. Alcohol 20(2): 149–159. https://doi.org/10.1016/s0741-8329(99)00070-1

    Article  PubMed  Google Scholar 

  28. Matthews DB, Scaletty S, Trapp S, Kastner A, Schneider AM, Schreiber A, Rossmann G (2022) Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 12(5): 606. https://doi.org/10.3390/brainsci12050606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out with the support of the State Program, topic no. 075-0152-22-00.

Author information

Authors and Affiliations

Authors

Contributions

E.V.F.—conceptualization, planning, investigation, statistical analysis of data, writing. G.E.G.—collection and processing of experimental data, preparation of illustrative material. M.V.D.—collection of experimental data, editing of the manuscript, translation into English. I.V.A.—collection of experimental data. A.Yu.E.—conceptualization, discussion of results, editing of the manuscript.

Corresponding author

Correspondence to E. V. Filatova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare the absence of conflicts of interest associated with the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 10, pp. 1365–1378https://doi.org/10.31857/S0869813922100065.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, E.V., Gromova, G.E., Dorofeikova, M.V. et al. Comparative Study of the Behavior of Wistar Rats, Dopamine Transporter Heterozygous Rats and Rats after Long-Term Ethanol Consumption in the Morris Water Maze. J Evol Biochem Phys 58, 1653–1663 (2022). https://doi.org/10.1134/S0022093022050337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050337

Keywords:

Navigation