Skip to main content
Log in

c-Fos Expression in Rat Medulla Oblongata after Subdiaphragmatic Vagotomy and Various Antigens Administration

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Neuroimmune interactions pathways are the current interests of neuroimmunophysiology. As it shown, n. vagus is a part of neuroimmune communications, so determination of activation patterns of n. vagus is the relevant task. The aim of the study is to determine the amount of с-Fos-positive neurons in nuclei tractus solitarius (NTS) and dorsal motor nuclei (DMX) in rat medulla oblongata after subdiaphragmatic vagotomy and various antigens administration. Immunohistochemistry and morphometry were performed for determination of с-Fos-positive neurons amount in different zones of NTS and DMN. In the cells of DMX were not abserved any с-Fos-positive neurons in control and after subdiaphragmatic vagotomy. LPS administration (500 µg/kg) induced the increasing of с-Fos-positive neurons amount in NTS, particularly in medial NTS. Subdiaphragmatic vagotomy leads to increasing of с-Fos-positive neurons amount in NTS after LPS or SEB (500 µg/kg) administration. LPS injection after subdiaphragmatic vagotomy induced an activation of neurons of the lateral, medial and central NTS, while SEB administration induced only medial NTS activation. Therefore, the pattern of NTS response to the introduction of certain antigens are shown. Subdiaphragmatic vagotomy leads to activation of NTS after the introduction of LPS and SEB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Prechtl JC, Powley TL (1990) The fiber composition of the abdominal vagus of the rat. Anat Embryol 181: 101–115. https://doi.org/10.1007/BF00198950

    Article  CAS  Google Scholar 

  2. Gasparini S, Howland JM, Thatcher AJ, Geerling JC (2020) Central afferents to the nucleus of the solitary tract in rats and mice. J Compar Neurol 528: 2708–2728. https://doi.org/10.1002/cne.24927

    Article  CAS  Google Scholar 

  3. Bonaz B, Sinniger V, Pellissier S (2016) Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594: 5781–5790. https://doi.org/10.1113/JP271539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hillsley K, Grundy D (2004) Vagus Nerve. In: Johnson LR (ed) Encyclopedia of Gastroenterology. Elsevier, New York. 573–576.

    Chapter  Google Scholar 

  5. Czura CJ, Tracey KJ (2005) Autonomic neural regulation of immunity. J Intern Med 257: 156–166. https://doi.org/10.1111/j.1365-2796.2004.01442.x

    Article  CAS  PubMed  Google Scholar 

  6. Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20: 156–166. https://doi.org/10.1038/nn.4477

    Article  CAS  PubMed  Google Scholar 

  7. Calzetta L, Luongo L, Cazzola M, Page C, Rogliani P, Facciolo F, Maione S, Capuano A, Rinaldi B, Matera MG (2015) Contribution of sensory nerves to LPS-induced hyperresponsiveness of human isolated bronchi. Life Sci 131: 44–50. https://doi.org/10.1016/j.lfs.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  8. Serrats J, Sawchenko PE (2009) How T-Cell-Dependent and -Independent Challenges Access the Brain: Vascular and Neural Responses to Bacterial Lipopolysaccharide and Staphylococcal Enterotoxin B. Brain Behav Immunol 23: 1038–1052. https://doi.org/10.1016/j.bbi.2009.06.004

    Article  CAS  Google Scholar 

  9. Wang X, Wang B-R, Zhang X-J, Duan X-L, Guo X, Ju G (2004) Fos expression in the rat brain after intraperitoneal injection of Staphylococcus enterotoxin B and the effect of vagotomy. Neurochem Res 29: 1667–1674. https://doi.org/10.1023/b:nere.0000035801.81825.2a

    Article  CAS  PubMed  Google Scholar 

  10. Perekrest SV, Gavrilov YuV, Abramova TV, Novikova NS, Korneva EA (2006) Activation of cells of hypothalamic structures with the introduction of antigens of various nature (by expression of the c-Fos gene). Med immunol 8: 631–636. (In Russ).

    Article  Google Scholar 

  11. Sklerov M, Dayan E, Browner N (2019) Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res 29: 555–566. https://doi.org/10.1007/s10286-018-0577-0

    Article  PubMed  Google Scholar 

  12. Reisert M, Weiller C, Hosp JA (2021) Displaying the autonomic processing network in humans—a global tractography approach. Neuroimage 231: 117852. https://doi.org/10.1016/j.neuroimage.2021.117852

    Article  CAS  PubMed  Google Scholar 

  13. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117: 289–296. https://doi.org/10.1172/JCI30555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goehler LE, Erisir A, Gaykema RPA (2006) Neural-immune interface in the rat area postrema. Neuroscience 140: 1415–1434. https://doi.org/10.1016/j.neuroscience.2006.03.048

    Article  CAS  PubMed  Google Scholar 

  15. Goehler LE, Gaykema RP, Hansen MK, Kleiner JL, Maier SF, Watkins LR (2001) Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats. Am J Physiol Regul Integr Comp Physiol 280: R1434–R1439. https://doi.org/10.1152/ajpregu.2001.280.5.R1434

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich T, Schalla MA, Goebel-Stengel M, Kobelt P, Rose M, Stengel A (2022) Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sci 12: 135. https://doi.org/10.3390/brainsci12020135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawai Y (2018) Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 12: 63. https://doi.org/10.3389/fnana.2018.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293: 540–580. https://doi.org/10.1002/cne.902930404

    Article  CAS  PubMed  Google Scholar 

  19. Tillinger A, Mravec B (2021) Vagotomy Affects Lipopolysaccharide-Induced Changes of Urocortin 2 Gene Expression in the Brain and on the Periphery. Neurochem Res 46: 159–164. https://doi.org/10.1007/s11064-020-03165-1

    Article  CAS  PubMed  Google Scholar 

  20. Azab AN, Kaplanski J (2001) Vagotomy attenuates the effect of lipopolysaccharide on body temperature of rats in a dose-dependent manner. J Endotoxin Res 7: 359–364.

    Article  CAS  PubMed  Google Scholar 

  21. Hermann GE, Emch GS, Tovar CA, Rogers RC (2001) c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am J Physiol Regul Integr Comp Physiol 280: R289-299. https://doi.org/10.1152/ajpregu.2001.280.1.R289

    Article  CAS  PubMed  Google Scholar 

  22. Hansen MK, Nguyen KT, Fleshner M, Goehler LE, Gaykema RP, Maier SF, Watkins LR (2000) Effects of vagotomy on serum endotoxin, cytokines, and corticosterone after intraperitoneal lipopolysaccharide. Am J Physiol Regul Integr Comp Physiol 278: R331–R336. https://doi.org/10.1152/ajpregu.2000.278.2.R331

    Article  CAS  PubMed  Google Scholar 

  23. Somann JP, Wasilczuk KM, Neihouser KV, Sturgis J, Albors GO, Robinson JP, Powley TL, Irazoqui PP (2019) Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 14: e0214317. https://doi.org/10.1371/journal.pone.0214317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hofmann GC, Hasser EM, Kline DD (2021) Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat. Am J Physiol Regul Integr Comp Physiol 320: R945–R959. https://doi.org/10.1152/ajpregu.00019.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K (2012) Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett 513: 31–36. https://doi.org/10.1016/j.neulet.2012.01.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was conducted within the state assignment of the Ministry of Science and Higher Education of the Russian Federation no. 075-01413-20-03 for 2020 and the planning period of 2021 and 2022.

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning of the experiment—E.A.K., A.S.D., writing and editing the article—A.S.D., O.L.K., N.V.L., E.A.K., data collection—A.S.D., O.L.K., N.V.L., data processing—A.S.D.

Corresponding author

Correspondence to O. L. Kochenda.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no apparent or potential conflicts of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 10, pp. 1353–1364https://doi.org/10.31857/S0869813922100053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatlova, A.S., Kochenda, O.L., Lavrov, N.V. et al. c-Fos Expression in Rat Medulla Oblongata after Subdiaphragmatic Vagotomy and Various Antigens Administration. J Evol Biochem Phys 58, 1643–1652 (2022). https://doi.org/10.1134/S0022093022050325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050325

Keywords:

Navigation