Skip to main content
Log in

Heart Electrical Activity during Ventricular Repolarization in Rats after Acute Exhaustive Treadmill Running

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The article is focused on the evaluation of the electrical activity of the heart in rats during ventricular repolarization after a single bout of forced treadmill running until exhaustion. Electrophysiological properties of the myocardium were studied by conventional ECG and body surface potential mapping. Cardiac potentials were registered in zoletil-anesthetized rats 3–5 days before (baseline) and 5, 10, 20 and 30 min after exhaustive treadmill running. Compared with baseline, an increase in the duration of the QTII, JTII and Tpeak–TendII intervals, an earlier onset and a later completion, as well as an increase in the duration of ventricular repolarization on body surface equipotential maps (BSPMs) were revealed in rats 5 min after exhaustive exercise. Ten min following treadmill running to exhaustion, the temporal parameters of the heart electrical activity returned to pre-exercise values. Changes in the amplitude characteristics of both ECGII (ST segment depression, a decrease in the T-wave amplitude) and BSPMs (a decrease in the maximum amplitudes of positive and negative extrema during ventricular repolarization) were showed after 5–10 min and persisted up to 20–30 min after running to exhaustion. A positive correlation was found between changes in the maximum amplitude of negative extremum of BSPMs and changes in the amplitude of the TII-wave in the analyzed time periods after exhausting exercise. It is assumed that the observed changes in the electrical properties of the heart in rats during ventricular repolarization after forced treadmill running were due to ischemic myocardial damage induced by exhaustive physical exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pinckard K, Baskin KK, Stanford KI (2019) Effects of exercise to improve cardiovascular health. Front Cardiovasc Med 6: 69. https://doi.org/10.3389/fcvm.2019.00069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15(3): 239–246. https://doi.org/10.1097/HJR.0b013e3282f55e09

    Article  PubMed  Google Scholar 

  3. Franklin BA, Thompson PD, Al-Zaiti SS, Albert CM, Hivert MF, Levine BD, Lobelo F, Madan K, Sharrief AZ, Eijsvogels T, American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council (2020) Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective-An Update: A Scientific Statement From the American Heart Association. Circulation 141(13): e705–e736. https://doi.org/10.1161/CIR.0000000000000749

    Article  PubMed  Google Scholar 

  4. Whyte GP (2008) Clinical significance of cardiac damage and changes in function after exercise. Med Sci Sports Exerc 40(8): 1416–1423. https://doi.org/10.1249/MSS.0b013e318172cefd

    Article  PubMed  Google Scholar 

  5. Zaretsky DV, Kline H, Zaretskaia MV, Rusyniak DE (2018) Automatic analysis of treadmill running to estimate times to fatigue and exhaustion in rodents. Peer J 6: e5017. https://doi.org/10.7717/peerj.5017

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang CC, Ding L, Zhang LY, Shi HH, Xue CH, Chi NQ, Yanagita T, Zhang TT, Wang YM (2020) A pilot study on the effects of DHA/EPA-enriched phospholipids on aerobic and anaerobic exercises in mice. Food Funct 11(2): 1441–1454. https://doi.org/10.1039/c9fo02489a

    Article  CAS  PubMed  Google Scholar 

  7. Su Y, Wang Y, Xu P, Sun Y, Ping Z, Huang H, Cao X (2021) Study on the time-effectiveness of exercise preconditioning on heart protection in exhausted rats. Chin J Physiol 64(2): 97–105. https://doi.org/10.4103/CJP.CJP_65_20

    Article  CAS  PubMed  Google Scholar 

  8. Ping Z, Zhang LF, Cui YJ, Chang YM, Jiang CW, Meng ZZ, Xu P, Liu HY, Wang DY, Cao XB (2015) The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1𝛼-NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats. Oxid Med Cell Longev 2015: 876825. https://doi.org/10.1155/2015/876825

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Xu P, Wang Y, Zhang J, Yang M, Chang Y, Zheng P, Huang H, Cao X (2020) Different Intensity Exercise Preconditions Affect Cardiac Function of Exhausted Rats through Regulating TXNIP/TRX/NF-ĸBp65/NLRP3 Inflammatory Pathways. Evid Based Complement Alternat Med 2020: 5809298. https://doi.org/10.1155/2020/5809298

    Article  PubMed  PubMed Central  Google Scholar 

  10. Locati ET, Bagliani G, Padeletti L (2017) Normal ventricular repolarization and QT interval: ionic background, modifiers, and measurements. Card Electrophysiol Clin 9(3): 487–513. https://doi.org/10.1016/j.ccep.2017.05.007

    Article  PubMed  Google Scholar 

  11. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL, Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA, American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128(8): 873–934. https://doi.org/10.1161/CIR.0b013e31829b5b44

    Article  PubMed  Google Scholar 

  12. Wang F, Zhao J, Wang C (2010) The dynamic changes on ECG in different time cases after repeated exhausted exercise in rats. Chin J Rehabilitat Med 25(11): 1030–1034. https://doi.org/10.3969/j.issn.1001-1242.2010.11.003

    Article  Google Scholar 

  13. Aronov DM, Lupanov VP (2007) Functional tests in cardiology. MEDpress-inform, M. (In Russ).

    Google Scholar 

  14. Bond RR, Finlay DD, Nugent CD, Moore G, Guldenring D (2013) Methods for presenting and visualising electrocardiographic data: From temporal signals to spatial imaging. J Electrocardiol 46(3):182–196. https://doi.org/10.1016/j.jelectrocard.2013.01.008

    Article  PubMed  Google Scholar 

  15. Bergquist J, Rupp L, Zenger B, Brundage J, Busatto A, MacLeod RS (2021) Body surface potential mapping: contemporary applications and future perspectives. Hearts 2(4): 514–542. https://doi.org/10.3390/hearts2040040

    Article  PubMed  Google Scholar 

  16. Kania M, Maniewski R, Zaczek R, Kobylecka M, Zbieć A, Królicki L, Opolski G (2019) High-Resolution Body Surface Potential Mapping in Exercise Assessment of Ischemic Heart Disease. Ann Biomed Eng 47(5):1300–1313. https://doi.org/10.1007/s10439-019-02231-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smirnova SL, Suslonova OV, Roshchevskaya IM (2020) Non-invasive detection of arrhythmogenic foci of atria by using the cardioelectric field on the surface of the body during experimental pulmonary hypertension. J Arrhythmol 1(99): 63–69. https://doi.org/10.35336/VA-2020-1-63-69.

    Article  Google Scholar 

  18. Suslonova OV, Smirnova SL, Roshchevskaya IM (2021) Cardioelectric field on the rat body surface during ventricular depolarization under chronic exposure to doxorubicin. Exp Cin Pharmacol 84(12): 9–13. https://doi.org/10.30906/0869-2092-2021-84-12-9-13

    Article  CAS  Google Scholar 

  19. Walters TJ, Ryan KL, Tate LM, Mason PA (2000) Exercise in the heat is limited by a critical internal temperature. J Appl Physiol 89(2): 799–806. https://doi.org/10.1152/jappl.2000.89.2.799

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto S, Matsui K, Sasabe M, Kitano M, Ohashi N (2000) Effect of SMP-300, a new Na+/H+ exchange inhibitor, on myocardial ischemia and experimental angina models in rats. Jpn J Pharmacol 84(2): 196–205. https://doi.org/10.1254/jjp.84.196

    Article  CAS  PubMed  Google Scholar 

  21. Poole DC, Copp SW, Colburn TD, Craig JC, Allen DL, Sturek M, O’Leary DS, Zucker IH, Musch TI (2020) Guidelines for animal exercise and training protocols for cardiovascular studies. Am J Physiol Heart Circ Physiol 318(5): 1100–1138. https://doi.org/10.1152/ajpheart.00697.2019

    Article  CAS  Google Scholar 

  22. Borges JP, Masson GS, Tibiriçá E, Lessa MA (2014) Aerobic interval exercise training induces greater reduction in cardiac workload in the recovery period in rats. Arq Bras Cardiol 102(1): 47–53. https://doi.org/10.5935/abc.20130230

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tarasova OS, Borzykh AA, Kuzmin IV, Borovik AS, Lukoshkova EV, Sharova AP, Vinogradova OL, Grugoriev AI (2012) Dynamics of heart rate changes in rats following stepwise change of treadmill running speed. Russ J Physiol 98(11): 1372–1379. (In Russ).

    CAS  Google Scholar 

  24. van de Vegte YJ, Tegegne BS, Verweij N, Snieder H, van der Harst P (2019) Genetics and the heart rate response to exercise. Cell Mol Life Sci 76(12): 2391–2409. https://doi.org/10.1007/s00018-019-03079-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gleeson TT, Baldwin KM (1981) Cardiovascular response to treadmill exercise in untrained rats. J Appl Physiol Respir Environ Exerc Physiol 50(6): 1206–1211. https://doi.org/10.1152/jappl.1981.50.6.1206.

    Article  CAS  PubMed  Google Scholar 

  26. Teregulov YuE, Salyamova LF, Maksumova NV, Gizatullina AF (2018) Evaluation of the QT interval during stress tests. Pract Med 1 (112): 30–36. (In Russ).

    Google Scholar 

  27. Watanabe T, Harumi K, Akutsu Y, Yamanaka H, Michihata T, Okazaki O, Katagiri T (1998) Relation between exercise-induced myocardial ischemia as assessed by nitrogen-13 ammonia positron emission tomography and QT interval behavior in patients with right bundle branch block. Am J Cardiol 81(7): 816–821. https://doi.org/10.1016/s0002-9149(98)00002-2

    Article  CAS  PubMed  Google Scholar 

  28. Zonneveld MH, Noordam R, Grond JV, Sabayan B, Mooijaart SP, Mcfarlane PW, Jukema JW, Trompet S (2020) Ventricular repolarization is associated with cognitive function, but not with cognitive decline and brain magnetic resonance imaging (MRI) measurements in older adults. J Clin Med 9(4): 911. https://doi.org/10.3390/jcm9040911

    Article  PubMed Central  Google Scholar 

  29. van den Berg J, de Bie S, Meijboom FJ, Hop WC, Pattynama PM, Bogers AJ, Helbing WA (2008) Changes during exercise of ECG intervals related to increased risk for ventricular arrhythmia in repaired tetralogy of Fallot and their relationship to right ventricular size and function. Int J Cardiol 124(3): 332–338. https://doi.org/10.1016/j.ijcard.2007.02.009

    Article  PubMed  Google Scholar 

  30. Al-Jaouni S, Abdul-Hady S, El-Bassossy H, Salah N, Hagras M (2019) Ajwa Nanopreparation Prevents Doxorubicin-Associated Cardiac Dysfunction: Effect on Cardiac Ischemia and Antioxidant Capacity. Integr Cancer Ther 18: 1534735419862351. https://doi.org/10.1177/1534735419862351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nazari A, Mohamadi A, Imani AR, Faghihi M, Tarahi MJ, Moghimian M, Cheraghi M (2021) Effect of vasopressin on electrocardiographic changes produced by ischemia-reperfusion in rats. Pak J Pharm 34(4): 1409–1414.

    CAS  Google Scholar 

  32. Tse, G, Gong M, Meng L, Wong CW, Georgopoulos S, Bazoukis G, Wong M, Letsas KP, Vassiliou VS, Xia Y, Baranchuk AM, Yan GX, Liu T (2018) Meta-analysis of Tpeak-Tend and Tpeak-Tend/QT ratio for risk stratification in congenital long QT syndrome. J Electrocardiol 51(3): 396–401. https://doi.org/10.1016/j.jelectrocard.2018.03.001

    Article  PubMed  Google Scholar 

  33. Katheria R, Setty SK, Arun BS, Bhat P, Jagadeesh HV, Manjunath CN (2021) Significance of ‘recovery ST-segment depression’ in exercise stress test. Indian Heart J 73(6): 693–696. https://doi.org/10.1016/j.ihj.2021.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Joukar S (2021) A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res 37(1): 25. https://doi.org/10.1186/s42826-021-00102-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Farraj AK, Hazari MS, Haykal-Coates N, Lamb C, Winsett DW, Ge Y, Ledbetter AD, Carll AP, Bruno M, Ghio A, Costa DL (2011) ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. Am J Respir Cell Mol Biol 44(2): 185–196. https://doi.org/10.1165/rcmb.2009-0456OC

    Article  CAS  PubMed  Google Scholar 

  36. Roshhevskaya IM (2008) Cardioelectric field of warm-blooded animals and humans. Nauka, SPb. (In Russ).

    Google Scholar 

  37. Opthof T, Janse MJ, Meijborg VM, Cinca J, Rosen MR, Coronel R (2016) Dispersion in ventricular repolarization in the human, canine and porcine heart. Prog Biophys Mol Biol 120(1–3): 222–235. https://doi.org/10.1016/j.pbiomolbio.2016.01.007

    Article  PubMed  Google Scholar 

  38. Berntsen RF, Gjestvang FT, Rasmussen K (1995) QRS prolongation as an indicator of risk of ischemia-related ventricular tachycardia and fibrillation induced by exercise. Am Heart J 129(3): 542–548. https://doi.org/10.1016/0002-8703(95)90283-x

    Article  CAS  PubMed  Google Scholar 

  39. Miller WT, Spach MS, Warren RB (1980) Total body surface potential mapping during exercise: QRS-T-wave changes in normal young adults. Circulation 62(3): 632–645. https://doi.org/10.1161/01.cir.62.3.632

    Article  PubMed  Google Scholar 

  40. Takala P, Hänninen H, Montone J, Mäkijärvi M, Nenonen J, Oikarinen L, Simeliu K, Toivonen L, Katil T (2001) Magnetocardiographic and electrocardiographic exercise mapping in healthy subjects. Ann Biomed Eng 29(6): 501–509. https://doi.org/10.1114/1.1376388

    Article  CAS  PubMed  Google Scholar 

  41. Hanninen H, Takala P, Rantonen J, Mäkijärvi M, Virtanen K, Nenonen J, Katila T, Toivonen L (2003) ST-T integral and T-wave amplitude in detection of exercise-induced myocardial ischemia evaluated with body surface potential mapping. J Electrocardiol 36(2): 89–98. https://doi.org/10.1054/jelc.2003.50013

    Article  PubMed  Google Scholar 

Download references

Funding

The research was performed in the framework of the state assignment AAA-A18-118012390260-9.

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning the experiment (A.G.I., S.L.S., I.M.R.), data collection (A.G.I., S.L.S., I.M.R.) data processing, writing the article (A.G.I.), editing the article (I.M.R.).

Corresponding author

Correspondence to A. G. Ivonin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no apparent or potential conflicts of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 10, pp. 1340–1352https://doi.org/10.31857/S0869813922100089.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivonin, A.G., Smirnova, S.L. & Roshchevskaya, I.M. Heart Electrical Activity during Ventricular Repolarization in Rats after Acute Exhaustive Treadmill Running. J Evol Biochem Phys 58, 1632–1642 (2022). https://doi.org/10.1134/S0022093022050313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050313

Keywords:

Navigation