Skip to main content
Log in

Mechanisms of Physiological and Neurotoxic Action of Hyperbaric Oxygen

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

During the period of use of hyperbaric oxygen (HBO2) in medical treatment and in scuba diving, extensive knowledge has been accumulated about the mechanisms of its biological action. In the present work, we analyze the experimental data of recent years related to the cellular and molecular mechanisms of the physiological and neurotoxic effects of hyperbaric oxygen. New data on the physiological action of HBO2 concern the mechanisms of hyperoxic vasoconstriction and baroreflex activation in hyperoxia. The toxic effect of hyperbaric oxygen is realized through the intensive production of reactive oxygen and nitrogen species, which cause post-translational modification of proteins responsible for neuronal electrogenesis and synaptic transmission in the GABAergic system of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Fitzgerald RS, Rocher A (2021) Physiology and Pathophysiology of Oxygen Sensitivity. Antioxidants 10: 1114. https://doi.org/10.3390/antiox10071114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown MM, Wade JP, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108 (Pt 1): 81–93. https://doi.org/10.1093/brain/108.1.81

    Article  PubMed  Google Scholar 

  3. Demchenko IT, Boso AE, O’Neill TJ, Bennett PB, Piantadosi CA (2000) Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol (1985) 88(4): 1381–1389. https://doi.org/10.1152/jappl.2000.88.4.1381

  4. Molénat F, Boussuges A, Grandfond A, Rostain JC, Sainty JM, Robinet C, Galland F, Meliet JL (2004) Haemodynamic effects of hyperbaric hyperoxia in healthy volunteers: an echocardiographic and Doppler study. Clin Sci (Lond) 106(4): 389–395. https://doi.org/10.1042/CS20030293

  5. Smit B, Smulders YM, van der Wouden JC, Oudemans-van Straaten HM, Spoelstra-de Man AME (2018) Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit Care 22(1): 45. https://doi.org/10.1186/s13054-018-1968-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pries AR, Heide J, Ley K, Klotz KF, Gaehtgens P (1995) Effect of oxygen tension on regulation of arteriolar diameter in skeletal muscle in situ. Microvasc Res 49(3): 289–299. https://doi.org/10.1006/mvre.1995.1025

    Article  CAS  PubMed  Google Scholar 

  7. Smith KM, Moore LC, Layton HE (2003) Advective transport of nitric oxide in a mathematical model of the afferent arteriole. Am J Physiol Renal Physiol 284(5): F1080–F1096. https://doi.org/10.1152/ajprenal.00141.2002

    Article  CAS  PubMed  Google Scholar 

  8. Milstein DM, Helmers R, Hackmann S, Belterman CN, van Hulst RA, de Lange J (2016) Sublingual microvascular perfusion is altered during normobaric and hyperbaric hyperoxia. Microvasc Res 105: 93–102. https://doi.org/10.1016/j.mvr.2016.02.001

    Article  PubMed  Google Scholar 

  9. Ariyaratnam P, Loubani M, Bennett R, Griffin S, Chaudhry MA, Cowen ME, Guvendik L, Cale AR, Morice AH (2013) Hyperoxic vasoconstriction of human pulmonary arteries: a novel insight into acute ventricular septal defects. ISRN Cardiol 2013: 685735. https://doi.org/10.1155/2013/685735

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eshmuminov D, Becker D, Hefti ML, Mueller M, Hagedorn C, Dutkowski P, Rudolf von Rohr P, Halbe M, Segerer S, Tibbitt MW, Bautista Borrego L, Schuler MJ, Clavien PA (2020) Hyperoxia in portal vein causes enhanced vasoconstriction in arterial vascular bed. Sci Rep 10(1): 20966. https://doi.org/10.1038/s41598-020-77915-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mishra A, Hamid A, Newman EA (2011) Oxygen modulation of neurovascular coupling in the retina. Proc Natl Acad Sci USA 108(43): 17827–17831. https://doi.org/10.1073/pnas.1110533108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mouren S, Souktani R, Beaussier M, Abdenour L, Arthaud M, Duvelleroy M, Vicaut E (1997) Mechanisms of coronary vasoconstriction induced by high arterial oxygen tension. Am J Physiol 272(1 Pt 2): H67–H75. https://doi.org/10.1152/ajpheart.1997.272.1.H67

    Article  CAS  PubMed  Google Scholar 

  13. Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, Beasley R (2009) Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J 158(3): 371–377. https://doi.org/10.1016/j.ahj.2009.05.037

    Article  CAS  PubMed  Google Scholar 

  14. Wolin MS, Ahmad M, Gupte SA (2005) Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289(2): L159–L173. https://doi.org/10.1152/ajplung.00060.2005

    Article  CAS  PubMed  Google Scholar 

  15. Benedict FG, Higgins HL (1911) Effects on men at rest of breathing oxygen-rich gas mixtures. Am J Physiol 28: 1–28.

    Article  CAS  Google Scholar 

  16. Jackson WF (2016) Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol 594(18): 5055–5077. https://doi.org/10.1113/JP270192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngo AT, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C, Jensen LJ (2013) Significance of K(ATP) channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC Physiol 13: 1–11. https://doi.org/10.1186/1472-6793-13-8

    Article  CAS  Google Scholar 

  18. Welsh DG, Jackson WF, Segal SS (1998) Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels. Am J Physiol 274(6): H2018–H2024. https://doi.org/10.1152/ajpheart.1998.274.6.H2018

    Article  CAS  PubMed  Google Scholar 

  19. Dallinger S, Dorner GT, Wenzel R, Graselli U, Findl O, Eichler HG, Wolzt M, Schmetterer L (2000) Endothelin-1 contributes to hyperoxia-induced vasoconstriction in the human retina. Invest Ophthalmol Vis Sci 41(3): 864–869.

    CAS  PubMed  Google Scholar 

  20. Bourque SL, Davidge ST, Adams MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am J Physiol Regul Integr Comp Physiol 300(6): R1288–R1295. https://doi.org/10.1152/ajpregu.00397.2010

    Article  CAS  PubMed  Google Scholar 

  21. Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25(1): 16–28. https://doi.org/10.1096/fj.10-161612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishiyama SK, Zhao J, Wray DW, Richardson RS (2017) Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. J Appl Physiol (1985) 122(2): 354–360. https://doi.org/10.1152/japplphysiol.00772.2016

  23. Rousseau A, Tesselaar E, Henricson J, Sjöberg F (2010) Prostaglandins and radical oxygen species are involved in microvascular effects of hyperoxia. J Vasc Res 47(5): 441–450. https://doi.org/10.1159/000282667

    Article  CAS  PubMed  Google Scholar 

  24. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24): 9265–9269. https://doi.org/10.1073/pnas.84.24.9265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA (1994) Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14(2): 175–192. https://doi.org/10.1038/jcbfm.1994.25

    Article  CAS  PubMed  Google Scholar 

  26. Czapski G, Goldstein S (1995) The role of the reactions of NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 19(6): 785–794. https://doi.org/10.1016/0891-5849(95)00081-8

    Article  CAS  PubMed  Google Scholar 

  27. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250(5 Pt 2): H822–H827. https://doi.org/10.1152/ajpheart.1986.250.5.H822

    Article  CAS  PubMed  Google Scholar 

  28. Katusic ZS (1996) Superoxide anion and endothelial regulation of arterial tone. Free Radic Biol Med 20(3): 443–448. https://doi.org/10.1016/0891-5849(96)02116-8

    Article  CAS  PubMed  Google Scholar 

  29. Zhilyaev SYu, Moskvin AN, Platonova TF, Gutsaeva DR, Churilina IV, Demchenko IT (2003) Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions. Neurosci Behav Physiol 33(8): 783–787. https://doi.org/10.1023/a:1025145331149

    Article  PubMed  Google Scholar 

  30. Haselden WD, Kedarasetti RT, Drew PJ (2020) Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 16(7): e1008069. https://doi.org/10.1371/journal. pcbi.1008069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kelm M (1999) Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1411(2–3): 273–289. https://doi.org/10.1016/s0005-2728(99)00020-1

    Article  CAS  PubMed  Google Scholar 

  32. Yan O, Liu Q, Zweier JL, Liu X (2007) Potency of authentic nitric oxide in inducing aortic relaxation. Pharmacol Res 55(4): 329–334. https://doi.org/10.1016/j.phrs.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  33. Heaps СI, Bray JF, McIntosh AI, Schroeder F (2019) Endothelial nitric oxide synthase protein distribution and nitric oxide production in endothelial cells along the coronary vascular tree. Microvasc Res 122: 34–40. https://doi.org/10.1016/j.mvr.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  34. Andries LJ, Brutsaert DL, Sys SU (1998) Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res 82(2): 195–203. https://doi.org/10.1161/01.res.82.2.195

    Article  CAS  PubMed  Google Scholar 

  35. Demchenko IT, Boso AE, Bennett PB, Whorton AR, Piantadosi CA (2000) Hyperbaric oxygen reduces cerebral blood flow by inactivating nitric oxide. Nitric Oxide 4(6): 597–608. https://doi.org/10.1006/niox.2000.0313

    Article  CAS  PubMed  Google Scholar 

  36. Thom SR, Bhopale V, Fisher D, Manevich Y, Huang PL, Buerk DG (2002) Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: an oxidative stress response. J Neurobiol 51(2): 85–100. https://doi.org/10.1002/neu.10044

    Article  CAS  PubMed  Google Scholar 

  37. Lancaster JR Jr (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91: 8137–8141. https://doi.org/10.1073/pnas.91.17.8137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Demchenko IT, Luchakov YI, Moskvin AN, Gutsaeva DR, Allen BW, Thalmann ED, Piantadosi CA (2005) Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure. J Cereb Blood Flow Metab 25(10): 1288–1300. https://doi.org/10.1038/sj.jcbfm.9600110

    Article  PubMed  Google Scholar 

  39. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Pt 1): C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 129(2): 83–94. https://doi.org/10.1016/j.jphs.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  41. Atochin DN, Demchenko IT, Astern J, Boso AE, Piantadosi CA, Huang PL (2003) Contributions of endothelial and neuronal nitric oxide synthases to cerebrovascular responses to hyperoxia. J Cereb Blood Flow Metab 23(10): 1219–1226. https://doi.org/10.1097/01.WCB.0000089601.87125.E4

    Article  CAS  PubMed  Google Scholar 

  42. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA (2002) Regulation of the brain’s vascular responses to oxygen. Circ Res 91(11): 1031–1037. https://doi.org/10.1161/01.res.0000043500.03647.81

    Article  CAS  PubMed  Google Scholar 

  43. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320(6061): 454–456. https://doi.org/10.1038/320454a0

    Article  CAS  PubMed  Google Scholar 

  44. Channon KM, Guzik TJ (2002) Mechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors. J Physiol Pharmacol 53(4 Pt 1): 515–524.

    CAS  PubMed  Google Scholar 

  45. Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276(5321): 2034–2037. https://doi.org/10.1126/science.276.5321.2034

    Article  CAS  PubMed  Google Scholar 

  46. McMahon TJ, Moon RE, Luschinger BP, Carraway MS, Stone AE, Stolp BW, Gow AJ, Pawloski JR, Watke P, Singel DJ, Piantadosi CA, Stamler JS (2002) Nitric oxide in the human respiratory cycle. Nat Med 8(7): 711–717. https://doi.org/10.1038/nm718

    Article  CAS  PubMed  Google Scholar 

  47. Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380(6571): 221–226. https://doi.org/10.1038/380221a0

    Article  CAS  PubMed  Google Scholar 

  48. Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67: 99–145. https://doi.org/10.1146/annurev.physiol.67.060603.090918

    Article  CAS  PubMed  Google Scholar 

  49. Luchsinger BP, Rich EN, Gow AJ, Williams EM, Stamler JS, Singel DJ (2003) Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the beta subunits. Proc Natl Acad Sci USA 100(2): 461–466. https://doi.org/10.1073/pnas.0233287100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Angelo M, Singel DJ, Stamler JS (2006) An S-nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate. Proc Natl Acad Sci USA 103(22): 8366–8371. https://doi.org/10.1073/pnas.0600942103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagababu E, Ramasamy S, Rifkind JM (2006) S-nitrosohemoglobin: a mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin. Nitric Oxide 15(1):20–29. https://doi.org/10.1016/j.niox.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  52. Pawloski JR, Hess DT, Stamler JS (2001) Export by red blood cells of nitric oxide bioactivity. Nature 409(6820): 622–626. https://doi.org/10.1038/35054560

    Article  CAS  PubMed  Google Scholar 

  53. Doctor A, Platt R, Sheram ML, Eischeid A, McMahon T, Maxey T, Doherty J, Axelrod M, Kline J, Gurka M, Gow A, Gaston B (2005) Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc Natl Acad Sci USA 102(16): 5709–5714. https://doi.org/10.1073/pnas.0407490102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pezacki JP, Ship NJ, Kluger R (2001) Release of nitric oxide from S-nitrosohemoglobin. Electron transfer as a response to deoxygenation. J Am Chem Soc 123(19): 4615–4616. https://doi.org/10.1021/ja015716o

    Article  CAS  PubMed  Google Scholar 

  55. Keipert PE, Gonzales A, Gomez CL, MacDonald VW, Hess JR, Winslow RM (1993) Acute changes in systemic blood pressure and urine output of conscious rats following exchange transfusion with diaspirin-crosslinked hemoglobin solution. Transfusion 33(9): 701–708. https://doi.org/10.1046/j.1537-2995.1993.33994025016.x

    Article  CAS  PubMed  Google Scholar 

  56. Tsai AG, Cabrales P, Manjula BN, Acharya SA, Winslow RM, Intaglietta M (2006) Dissociation of local nitric oxide concentration and vasoconstriction in the presence of cell-free hemoglobin oxygen carriers. Blood 108(10): 3603–3610. https://doi.org/10.1182/blood-2006-02-005272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reynolds JD, Bennett KM, Cina AJ, Diesen DL, Henderson MB, Matto F, Plante A, Williamson RA, Zandinejad K, Demchenko IT, Hess DT, Piantadosi CA, Stamler JS (2013) S-nitrosylation therapy to improve oxygen delivery of banked blood. Proc Natl Acad Sci USA 110(28): 11529–11534. https://doi.org/10.1073/pnas.1306489110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sheng H, Reynolds JD, Auten RL, Demchenko IT, Piantadosi CA, Stamler JS, Warner DS (2011) Pharmacologically augmented S-nitrosylated hemoglobin improves recovery from murine subarachnoid hemorrhage. Stroke 42(2): 471–476. https://doi.org/10.1161/STROKEAHA.110.600569

    Article  CAS  PubMed  Google Scholar 

  59. Helms CC, Gladwin MT, Kim-Shapiro DB (2018) Erythrocytes and Vascular Function: Oxygen and Nitric Oxide. Front Physiol 9: 125–128. https://doi.org/10.3389/fphys.2018.00125

    Article  PubMed  PubMed Central  Google Scholar 

  60. Roach RC, Koskolou MD, Calbet JA, Saltin B (1999) Arterial O2 content and tension in regulation of cardiac output and leg blood flow during exercise in humans. Am J Physiol 276(2): H438–H445. https://doi.org/10.1152/ajpheart.1999.276.2.H438

    Article  CAS  PubMed  Google Scholar 

  61. Gonzalez-Alonso J, Richardson RS, Saltin B (2001) Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen. J Physiol 530(Pt 2): 331–341. https://doi.org/10.1111/j.1469-7793.2001.0331l.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. González-Alonso J, Mortensen SP, Dawson EA, Secher NH, Damsgaard R (2006) Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin. J Physiol 572(Pt 1): 295–305. https://doi.org/10.1113/jphysiol.2005.101121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. DeMartino AW, Kim-Shapiro DB, Patel RP, Gladwin MT (2019) Nitrite and nitrate: chemical biology and signalling. Br J Pharmacol 176: 228–245. https://doi.org/10.1111/bph.14484

    Article  CAS  PubMed  Google Scholar 

  64. Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, Lambertsen CJ, Eckenhoff RG (2003) Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol (1985) 95(6): 2453–2461. https://doi.org/10.1152/japplphysiol.00303.2003

  65. Bulte DP, Chiarelli PA, Wise RG, Jezzard P (2007) Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 27(1): 69–75 https://doi.org/10.1038/sj.jcbfm.9600319

    Article  PubMed  Google Scholar 

  66. Pasgaard T, Stankevicius E, Jørgensen MM, Ostergaard L, Simonsen U, Frøbert O (2007) Hyperoxia reduces basal release of nitric oxide and contracts porcine coronary arteries. Acta Physiol (Oxf) 191(4): 285–296. https://doi.org/10.1111/j.1748-1716.2007.01745.x

  67. Shibata S, Iwasaki K, Ogawa Y, Kato J, Ogawa S (2005) Cardiovascular neuroregulation during acute exposure to 40, 70, and 100% oxygen at sea level. Aviat Space Environ Med 76(12): 1105–1110.

    CAS  PubMed  Google Scholar 

  68. Gole Y, Gargne O, Coulange M, Steinberg JG, Bouhaddi M, Jammes Y, Regnard J, Boussuges A (2011) Hyperoxia-induced alterations in cardiovascular function and autonomic control during return to normoxic breathing. Eur J Appl Physiol 111(6): 937–946. https://doi.org/10.1007/s00421-010-1711-4

    Article  PubMed  Google Scholar 

  69. Schipke JD, Muth T, Pepper C, Schneppendahl J, Hoffmanns M, Dreyer S (2022) Hyperoxia and the cardiovascular system: experiences with hyperbaric oxygen therapy. Med Gas Res 12(4): 153–157. https://doi.org/10.4103/2045-9912.337997

    Article  PubMed  PubMed Central  Google Scholar 

  70. Larsson A, Uusijärvi J, Eksborg S, Lindholm P (2010) Tissue oxygenation measured with near-infrared spectroscopy during normobaric and hyperbaric oxygen breathing in healthy subjects. Eur J Appl Physiol 109(4): 757–761. https://doi.org/10.1007/s00421-010-1403-0

    Article  CAS  PubMed  Google Scholar 

  71. Neubauer B, Tetzlaff K, Staschen CM, Bettinghausen E (2001) Cardiac output changes during hyperbaric hyperoxia. Int Arch Occup Environ Health 74(2): 119–122. https://doi.org/10.1007/s004200000201

    Article  CAS  PubMed  Google Scholar 

  72. Savitt MA, Rankin JS, Elberry JR, Owen CH, Camporesi EM (1994) Influence of hyperbaric oxygen on left ventricular contractility, total coronary blood flow, and myocardial oxygen consumption in the conscious dog. Undersea Hyperb Med 21(2): 169–183.

    CAS  PubMed  Google Scholar 

  73. Demchenko IT, Zhilyaev SY, Moskvin AN, Piantadosi CA, Allen BW (2011) Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury. Am J Physiol Lung Cell Mol Physiol 300(1): L102–L111. https://doi.org/10.1152/ajplung.00178.2010

    Article  CAS  PubMed  Google Scholar 

  74. Demchenko IT, Gasier HG, Zhilyaev SYu, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2014) Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen. J Appl Physiol 117(5): 525–534. https://doi.org/10.1152/japplphysiol.00435.2014

    Article  CAS  PubMed  Google Scholar 

  75. Zhilyaev SYu, Platonova TF, Alekseeva OS, Nikitina ER, Demchenko IT (2019) Adaptive mechanisms of baroreflectory regulation of the cardiovascular system in extreme hyperoxia. J Evol Biochem Physiol 55(5): 365–371. https://doi.org/10.1134/S002209301905003X

    Article  CAS  Google Scholar 

  76. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7(5): 335–346. https://doi.org/10.1038/nrn1902

    Article  CAS  PubMed  Google Scholar 

  77. Thrasher TN (2005) Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am J Physiol Regul Integr Comp Physiol 288(4): R819–R827. https://doi.org/10.1152/ajpregu.00813.2004

    Article  CAS  PubMed  Google Scholar 

  78. Stauss HM, Moffitt JA, Chapleau MW, Abboud FM, Johnson AK (2006) Baroreceptor reflex sensitivity estimated by the sequence technique is reliable in rats. Am J Physiol Heart Circ Physiol 291(1): H482–H483. https://doi.org/10.1152/ajpheart.00228.2006

    Article  CAS  PubMed  Google Scholar 

  79. Henderson LA, Richard CA, Macey PM, Runquist ML, Yu PL, Galons JP, Harper RM (2004) Functional magnetic resonance signal changes in neural structures to baroreceptor reflex activation. J Appl Physiol 96(2): 693–703. https://doi.org/10.1152/japplphysiol.00852.2003

    Article  PubMed  Google Scholar 

  80. Platonova TF, Alekseeva OS, Nikitina ER, Demchenko IT (2020) Blockade of Brain Adrenoreceptors Delays Seizure Development during Hyperbaric Oxygen Breathing. J Evol Biochem Phys 56(5): 425–433. https://doi.org/10.1134/S0022093020050051

    Article  CAS  Google Scholar 

  81. Demchenko IT, Zhilyaev SYu, Platonova TF, Alekseeva OS, Nikitina ER (2021) Inhibition of GABA transaminase and GABA transporters in the brain by vigabatrin and tiagabine prevents seizure development in rats breathing hyperbaric oxygen. J Evol Biochem Physiol 57(5): 1101–1109. https://doi.org/10.1134/S0022093021050112

    Article  Google Scholar 

  82. Zhilyaev SYu, Moskvin AN, Platonova TF, Demchenko IT (2015) Electric stimulation of vagus nerve modulates a propagation of oxygen epilepsy in rabbits. Russ J Physiol 101(11): 1279–1288. (In Russ).

    CAS  Google Scholar 

  83. Zaltsman GL (1968) Stages of formation of oxygen epilepsy and the functional state of the centres of the nervous system. In: Zaltsman GL (Ed) Hyperbaric epilepsy and narcosis. Nauka, Leningrad. (In Russ).

    Google Scholar 

  84. Selivra AI (1983) Hyperbaric oxygenation. Physiological mechanisms of central nervous system responses to hyperoxia. Nauka, Leningrad. (In Russ).

    Google Scholar 

  85. Dean JB, Mulkey DK, Garcia AJ 3rd, Putnam RW, Henderson RA 3rd (2003) Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol 95(3): 883–909. https://doi.org/10.1152/japplphysiol.00920.2002

    Article  CAS  PubMed  Google Scholar 

  86. Ciarlone GE, Hinojo CM, Stavitzski NM, Dean JB (2019) CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings. Redox Biol 27: 101–159. https://doi.org/10.1016/j.redox.2019.101159

    Article  CAS  Google Scholar 

  87. Poff AM, Kernagis D, D’Agostino DP (2017) Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Compr Physiol 7: 213–234. https://doi.org/10.1002/cphy.c150032

    Article  Google Scholar 

  88. Zhang Y, Wang Z, Chen Y, Li R (2019) Intermittent hyperbaric oxygen exposure mobilizing peroxiredoxin 6 to prevent oxygen toxicity. J Physiol Sci 69: 779–790. https://doi.org/10.1007/s12576-019-00694-5

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, You B, Chen Y, Yang J, Xie C, Huang G, Li R, Hu P (2020) Effect of Transcriptional Regulatory Factor FoxO3a on Central Nervous System Oxygen Toxicity. Front Physiol 11: 596326. https://doi.org/10.3389/fphys.2020.596326

    Article  PubMed  PubMed Central  Google Scholar 

  90. Torbati D, Church DF, Keller JM, Pryor WA (1992) Free radical generation in the brain precedes hyperbaric oxygen-induced convulsions. Free Radic Biol Med 13(2): 101–106. https://doi.org/10.1016/0891-5849(92)90070-w

    Article  CAS  PubMed  Google Scholar 

  91. D’Agostino DP, Putnam RW, Dean JB (2007) Superoxide (*O2-) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. J Neurophysiol 98(2): 1030–1041.

    Article  PubMed  Google Scholar 

  92. Ciarlone GE, Dean JB (2016) Normobaric hyperoxia stimulates superoxide and nitric oxide production in the caudal solitary complex of rat brain slices. Am J Physiol Cell Physiol 311(6): C1014–C1026. https://doi.org/10.1152/ajpcell.00160.2016

    Article  PubMed  Google Scholar 

  93. Demchenko IT, Boso AE, Whorton AR, Piantadosi CA (2001) Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions. Brain Res 917(2): 253–261. https://doi.org/10.1016/s0006-8993(01)03057-8

    Article  CAS  PubMed  Google Scholar 

  94. Chavko M, Auker CR, McCarron RM (2003) Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide 9(1): 18–23. https://doi.org/10.1016/s1089-8603(03)00045-4

    Article  CAS  PubMed  Google Scholar 

  95. Allen BW, Demchenko IT, Piantadosi CA (2009) Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol (1985) 106(2): 662–667. https://doi.org/10.1152/japplphysiol.91109.2008

  96. Oury TD, Ho YS, Piantadosi CA, Crapo JD (1992) Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci USA 89(20): 9715–9719. https://doi.org/10.1073/pnas.89.20.9715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bitterman N, Bitterman H (1998) L-arginine-NO pathway and CNS oxygen toxicity. J Appl Physiol (1985) 84(5): 1633–1638. https://doi.org/10.1152/jappl.1998.84.5.1633

  98. Demchenko IT, Piantadosi CA (2006) Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea Hyperb Med 33(3): 169–174.

    CAS  PubMed  Google Scholar 

  99. Gasier HG, Demchenko IT, Tatro LG, Piantadosi CA (2017) S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures. Neurosci Lett 653: 283–287. https://doi.org/10.1016/j.neulet.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  100. Alekseeva OS, Zhilyaev SYu, Platonova TF, Tsyba DL, Kirik OV, Korzhevskii DE, Demchenko IT (2022) Involvement of glutamine synthetase in the development of hyperbaric oxygen seizures. J Evol Biochem Physiol 58(1): 158–166. https://doi.org/10.1134/S0022093022010148

    Article  CAS  Google Scholar 

  101. Hall AA, Young C, Bodo M, Mahon RT (2013) Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia. J Appl Physiol (1985) 115(6): 861–867. https://doi.org/10.1152/japplphysiol.00221.2013

  102. Moskvin AN, Platonova TPh, Zhilyaev SYu, Alekseeva OS, Nikitina ER, Demchenko IT (2020) Blockade of γ-Aminobutyric Acid Transporters in Brain Synapses Protects Against Hyperbaric Oxygen-Induced Convulsions. Neurosci Behav Physiol 50(4): 505–510. https://doi.org/10.1007/s11055-020-00930-1

    Article  CAS  Google Scholar 

  103. Demchenko IT, Zhilyaev SYu, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2017) Antiepileptic drugs prevent seizures in hyperbaric oxygen: A novel model of epileptiform activity. Brain Res 1657: 347–354. https://doi.org/10.1016/j.brainres.2016.12.032

    Article  CAS  PubMed  Google Scholar 

  104. Gutsaeva DR, Suliman HB, Carraway MS, Demchenko IT, Piantadosi CA (2006) Oxygen-induced mitochondrial biogenesis in the rat hippocampus. Neuroscience 137(2): 493–504. https://doi.org/10.1016/j.neuroscience.2005.07.061

    Article  CAS  PubMed  Google Scholar 

  105. Piantadosi CA, Suliman HB (2012) Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 53(11): 2043–2053. https://doi.org/10.1016/j.freeradbiomed.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Matalon S, Hardiman KM, Jain L, Eaton DC, Kotlikoff M, Eu JP, Sun J, Meissner G, Stamler JS (2003) Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Am J Physiol Lung Cell Mol Physiol 285(6): L1184–L1189. https://doi.org/10.1152/ajplung.00281.2003

    Article  CAS  PubMed  Google Scholar 

  107. He H, Li X, He Y (2019) Hyperbaric oxygen therapy attenuates neuronal apoptosis induced by traumatic brain injury via Akt/GSK3β/β-catenin pathway. Neuropsychiatr Dis Treat 15: 369–374. https://doi.org/10.2147/NDT.S183632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV (2020) An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 10: 1279. https://doi.org/10.3390/biom10091279

    Article  CAS  PubMed Central  Google Scholar 

  109. Close GL, Kayani AC, Ashton T, McArdle A, Jackson MJ (2007) Release of superoxide from skeletal muscle of adult and old mice: an experimental test of the reductive hotspot hypothesis. Aging Cell 6(2): 189–195. https://doi.org/10.1111/j.1474-9726.2007.00277.x

    Article  CAS  PubMed  Google Scholar 

  110. Schiavo S, Richardson D, Santa Mina D, Buryk-Iggers S, Uehling J, Carroll J, Clarke H, Djaiani C, Gershinsky M, Katznelson R (2020) Hyperbaric oxygen and focused rehabilitation program: A feasibility study in improving upper limb motor function after stroke. Appl Physiol Nutr Metab 45(12): 1345–1352. https://doi.org/10.1139/apnm-2020-0124

    Article  CAS  PubMed  Google Scholar 

  111. Sankaran R, Radhakrishnan K, Sundaram KR (2019) Hyperbaric oxygen therapy in patients with hypoxic ischemic encephalopathy. Neurol India 67(3): 728–731. https://doi.org/10.4103/0028-3886.263236

    Article  PubMed  Google Scholar 

  112. Liang XX, Hao YG, Duan XM, Han XL, Cai XX (2020) Hyperbaric oxygen therapy for post-stroke depression: A systematic review and meta-analysis. Clin Neurol Neurosurg 195: 105910. https://doi.org/10.1016/j.clineuro.2020.105910

    Article  PubMed  Google Scholar 

  113. Golan H, Makogon B, Volkov O, Smolyakov Y, Hadanny A, Efrati S (2019) Imaging-based predictors for hyperbaric oxygen therapy outcome in post-stroke patients. Report 1. Med Hypotheses 136: 109510. https://doi.org/10.1016/j.mehy.2019.109510

    Article  CAS  PubMed  Google Scholar 

  114. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7(1): 1–7. https://doi.org/10.1016/j.arr.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  115. Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN (2018) Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 315(1): R1–R27. https://doi.org/10.1152/ajpregu.00165.2017

    Article  CAS  PubMed  Google Scholar 

  116. Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG (2006) Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol 290(4): H1378–H1386. https://doi.org/10.1152/ajpheart.00888.2005

    Article  CAS  PubMed  Google Scholar 

  117. Hachmo Y, Hadanny A, Abu Hamed R, Daniel-Kotovsky M, Catalogna M, Fishlev G, Lang E, Polak N, Doenyas K, Friedman M, Zemel Y, Bechor Y, Efrati S (2020) Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging (Albany NY) 12(22): 22445–22456. https://doi.org/10.18632/aging.202188

  118. Demchenko IT, Zhilyaev SYu, Alekseeva OS, Krivchenko AI, Piantadosi CA, Gasier HG (2019) Increased Antiseizure Effectiveness with Tiagabine Combined with Sodium Channel Antagonists in Mice Exposed to Hyperbaric Oxygen. Neurotox Res 36(4): 788–795. https://doi.org/10.1007/s12640-019-00063-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Grant no. 22-25-00539).

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and conceptual analysis of the work (D.I.T.), critical analysis of one’s own experience with the topic of the review (Z.S.Y., P.T.F., A.O.C.), literature collection and analysis (Z.S.Y., P.T.F), data processing (A.O.S., Z.S.Y., P.T.F.), writing and editing the article (D.I.T., A.O.S.).

Corresponding author

Correspondence to O. S. Alekseeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no obvious and potential conflicts of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 10, pp. 1243–1263https://doi.org/10.31857/S0869813922100041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchenko, I.T., Zhilyaev, S.Y., Platonova, T.F. et al. Mechanisms of Physiological and Neurotoxic Action of Hyperbaric Oxygen. J Evol Biochem Phys 58, 1554–1570 (2022). https://doi.org/10.1134/S0022093022050246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050246

Keywords:

Navigation