Skip to main content
Log in

miR-338-3p Inhibits Apoptosis Evasion in Huh7 Liver Cancer Cells by Targeting Sirtuin 6

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Liver cancer is one of the most common cancers with an unsatisfactory prognosis and high mortality rate. The ability of liver cancer cells to evade apoptosis results in the poor therapeutic effect of existing treatments and high rates of tumor recurrence and metastasis. This study investigated the effects of abnormal miR-338-3p expression on the ability of liver cancer cells to avoid apoptosis and the mechanism for that avoidance. The levels of miR-338-3p in liver tumor tissues and in different liver cancer cell lines were analysed by qRT-PCR which demonstrated its downregulation in liver tumor tissues and cells, especially in the Huh7 cells. Cell viability and apoptosis rates of Huh7 liver cancer cells were evaluated using the CCK-8 assay, clone formation assay, flow cytometry, and TUNEL assay. whereas the expression levels of apoptosis-related proteins (Bax, caspase-3, Cyt C, and X-linked inhibitor of apoptosis protein [XIAP]) were analyzed by Western blotting. Next, the target relationship between miR-338-3p and Sirtuin 6 (SIRT6) was identified by conducting a dual luciferase reporter gene assay. Overexpression of miR-338-3p was found to inhibit cell viability and promote the apoptosis of Huh7 cells. Additionally, an upregulation of miR-338-3p significantly promoted Bax, caspase-3, and Cyt C expression, and suppressed XIAP and SIRT6 expression. Notably, SIRT6 was proven to be a target gene of miR-338-3p, and SIRT6 overexpression was shown to reverse the anti-tumor effect of miR-338-3p upregulation in Huh7 cells. Furthermore, the apoptosis induction effect of Cisplatin was reduced by SIRT6, but restored by miR-338-3p. In conclusion, this study demonstrated that miR-338-3p increased apoptosis in liver cancer cell Huh7 by inhibiting SIRT6, and thereby enhanced the cytocidal effect of the apoptosis inducer Cisplatin. These results suggest miR-338-3p as a target for treating liver cancer, which might provide a new therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71: 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Tapper EB, Parikh ND (2018) Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ 362: k2817. https://doi.org/10.1136/bmj.k2817

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fu J, Wang H (2018) Precision diagnosis and treatment of liver cancer in China. Cancer Lett 412: 283–288. https://doi.org/10.1016/j.canlet.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  4. Zheng R, Qu C, Zhang S, Zeng H, Sun K, Gu X, Xia C, Yang Z, Li H, Wei W (2018) Liver cancer incidence and mortality in China: temporal trends and projections to 2030. Chin J Cancer Res 30: 571. https://doi.org/10.21147/j.issn.1000-9604.2018.06.01

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23: 620–633. https://doi.org/10.1016/j.tcb.2013.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17: 395–417. https://doi.org/10.1038/s41571-020-0341-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grillone K, Riillo C, Scionti F, Rocca R, Tradigo G, Guzzi PH, Alcaro S, Di Martino MT, Tagliaferri P, Tassone P (2020) Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 39: 1–19. https://doi.org/10.1186/s13046-020-01622-x

    Article  CAS  Google Scholar 

  9. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234: 5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  10. Ardekani AM, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna journal of medical biotechnology 2: 161–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu M, Huang H, Yang J, Li J, Zhao G, Li W, Li X, Liu G, Wei L, Shi B (2019) miR-338-3p regulates the proliferation, apoptosis and migration of SW480 cells by targeting MACC1. Exp Ther Med 17: 2807–2814. https://doi.org/10.1186/s12935-017-0415-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang G, Zheng H, Zhang G, Cheng R, Lu C, Guo Y, Zhao G (2017) MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2. Cancer Cell Int 17: 1–10. https://doi.org/10.1186/s12935-017-0415-9

    Article  CAS  Google Scholar 

  13. Cao Y, Shi X, Liu Y, Xu R, Ai Q (2018) MicroRNA-338-3p inhibits proliferation and promotes apoptosis of multiple myeloma cells through targeting Cyclin-dependent kinase 4. Oncol Res 27: 117–124. https://doi.org/10.3727/096504018X15213031799835

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang XH, Wang Q, Chen JS, Fu XH, Chen XL, Chen LZ, Li W, Bi J, Zhang LJ, Fu Q (2009) Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol Res 39: 786–794. https://doi.org/10.1111/j.1872-034X.2009.00502.x

    Article  CAS  PubMed  Google Scholar 

  15. Liu P, Zhang H, Liang X, Ma H, Luan F, Wang B, Bai F, Gao L, Ma C (2015) HBV preS2 promotes the expression of TAZ via miRNA-338-3p to enhance the tumorigenesis of hepatocellular carcinoma. Oncotarget 6: 29048. https://doi.org/10.18632/oncotarget.4804

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y (2015) MicroRNA-338-3p inhibits cell proliferation in hepatocellular carcinoma by target forkhead box P4 (FOXP4). Int J Clin Exp Pathol 8: 337–344.

    PubMed  PubMed Central  Google Scholar 

  17. Shen H, Li H, Zhou J (2022) Circular RNA hsa_circ_0032683 inhibits the progression of hepatocellular carcinoma by sponging microRNA-338-5p. Bioengineered 13: 2321–2335. https://doi.org/10.1080/21655979.2021.2024961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fiorentino F, Mai A, Rotili D (2021) Emerging Therapeutic Potential of SIRT6 Modulators. J Med Chem 64: 9732–9758. https://doi.org/10.1021/acs.jmedchem.1c00601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez Herrera KN, Lee J, Haigis MC (2015) Intersections between mitochondrial sirtuin signaling and tumor cell metabolism. Crit Rev Biochem Mol Biol 50: 242–255. https://doi.org/10.3109/10409238.2015.1031879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D’Onofrio N, Balestrieri ML (2017) Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev 35: 301–311. https://doi.org/10.1016/j.arr.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C, Yu Y, Huang Q, Tang K (2019) SIRT6 regulates the proliferation and apoptosis of hepatocellular carcinoma via the ERK1/2 signaling pathway. Mol Med Rep 20: 1575–1582. https://doi.org/10.3892/mmr.2019.10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khongkow M, Olmos Y, Gong C, Gomes AR, Monteiro LJ, Yague E, Cavaco TB, Khongkow P, Man EP, Laohasinnarong S, Koo CY, Harada-Shoji N, Tsang JW, Coombes RC, Schwer B, Khoo US, Lam EW (2013) SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34: 1476–1486. https://doi.org/10.1093/carcin/bgt098

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Peterson LM, Ndiaye MA, Singh CK, Chhabra G, Huang W, Ahmad N (2017) SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. Genes Cancer 8: 701–712. https://doi.org/10.18632/genesandcancer.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Xie QR, Wang B, Shao J, Zhang T, Liu T, Huang G, Xia W (2013) Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell 4: 702–710. https://doi.org/10.1007/s13238-013-3054-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ran L-K, Chen Y, Zhang Z-Z, Tao N-N, Ren J-H, Zhou L, Tang H, Chen X, Chen K, Li W-Y (2016) SIRT6 overexpression potentiates apoptosis evasion in hepatocellular carcinoma via BCL2-associated X protein-dependent apoptotic pathway. Clin Cancer Res 22: 3372–3382. https://doi.org/10.1158/1078-0432.CCR-15-1638

    Article  CAS  PubMed  Google Scholar 

  26. Zhou HZ, Zeng HQ, Yuan D, Ren JH, Cheng ST, Yu HB, Ren F, Wang Q, Qin YP, Huang AL, Chen J (2019) NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal 17: 168. https://doi.org/10.1186/s12964-019-0491-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan W, Liu B, Qu S, Liang G, Luo W, Gong C (2018) MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 15: 2735–2742. https://doi.org/10.3892/ol.2017.7638

    Article  CAS  PubMed  Google Scholar 

  28. Mirzaei S, Zarrabi A, Asnaf SE, Hashemi F, Zabolian A, Hushmandi K, Raei M, Goharrizi MASB, Makvandi P, Samarghandian S (2021) The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 268: 119005. https://doi.org/10.1016/j.lfs.2020.119005

    Article  CAS  PubMed  Google Scholar 

  29. Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y, Ge X, Gao H, Li M, Jiang X (2018) miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis 9: 1–14. https://doi.org/10.1038/s41419-018-0611-0

    Article  CAS  Google Scholar 

  30. Sun S, Wang R, Yi S, Li S, Wang L, Wang J (2021) Roles of the microRNA-338-3p/NOVA1 axis in retinoblastoma. Mol Med Report 23: 394. https://doi.org/10.3892/mmr.2021.12033

    Article  CAS  Google Scholar 

  31. Xiao G, Wang Q, Li B, Wu X, Liao H, Ren Y, Ai N (2018) MicroRNA-338-3p suppresses proliferation of human liver cancer cells by targeting SphK2. Oncol Res 26: 1183–1189. https://doi.org/10.3727/096504018X15151495109394

    Article  PubMed  PubMed Central  Google Scholar 

  32. Masri S (2015) Sirtuin-dependent clock control: new advances in metabolism, aging and cancer. Curr Opin Clin Nutr Metab Care 18: 521–527. https://doi.org/10.1097/MCO.0000000000000219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez-Pastor B, Mostoslavsky R (2012) Sirtuins, metabolism, and cancer. Front Pharmacol 3: 22. https://doi.org/10.3389/fphar.2012.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han LL, Jia L, Wu F, Huang C (2019) Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin. Mol Cancer Res 17: 2267–2280. https://doi.org/10.1158/1541-7786.MCR-19-0321

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research is supported by the Program from Science and Technology (Medical and Health) of Shaoxing (Grant no. 2020A13061 and no. 2018C30025).

Author information

Authors and Affiliations

Authors

Contributions

Study design/planning: G.X and Q.W; Data collection/entry: G.X, M.D and Z.Z; Data analysis/statistics: W.Z, J.C and Y.F; Data interpretation: G.X, Q.W and M.D; Preparation of manuscript: G.X and Q.W; Literature analysis/search: G.X and Q.W; Funding collection: G.X. All authors have reviewed the manuscript and consented the submission.

Corresponding author

Correspondence to G. Xiao.

Ethics declarations

Ethic statement

This research is agreed by the ethic committee of Affiliated Hospital of Shaoxing University (2020A13061), and informed consent were obtained from the patients.

Conflict of interests

The authors declare that they have no competing interests regarding this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Wang, Q., Ding, M. et al. miR-338-3p Inhibits Apoptosis Evasion in Huh7 Liver Cancer Cells by Targeting Sirtuin 6. J Evol Biochem Phys 58, 1413–1424 (2022). https://doi.org/10.1134/S002209302205012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302205012X

Keywords:

Navigation