Skip to main content
Log in

Effects of the Chaperone Inducer U133 on Sleep–Wake Cycle Temporal Characteristics and Spatial Memory

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

U133, a chaperone inducer synthesized on the basis of echinochrome A, has antitumor, antioxidant and neuroprotective activity. The breadth of its therapeutic effects arouses great interest in this compound as a potential precursor of drugs. However, the functional spectrum of biological activity of U133 remains incomplete. This study aimed to find out whether a U133-induced increase in the chaperone Hsp70 brain level is associated with changes in the sleep–wake cycle and spatial working memory in Wistar rats under natural physiological conditions. Intraperitoneal injection of U133 led to an increase in Hsp70 (HSPA1) levels in the brain structures involved in the mechanisms of sleep–wake cycle regulation and memory formation, such as the locus coeruleus, preoptic area of the hypothalamus, substantia nigra pars compacta, ventral tegmental area of the midbrain). An increase in brain Hsp70 levels was associated with a 1.7-fold increase in the duration of rapid-eye movement sleep (REMS) during the period from the 12th to 24th h after U133 injection, suggesting that the effect of U133 on REMS representation is mediated via Hsp70. Although REMS can affect the formation of different memory modalities, we found no significant effect of U133 on spatial working memory. U133 can be recommended for further investigation of the spectrum of its biological activity in order to predict its therapeutic efficacy in various pathologies of the central nervous system and aging, when sleep is impaired and chaperone expression in the brain is diminished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mostert S, Petzer A, Petzer JP (2016) Evaluation of natural and ynthetic 1,4-naphthoquinones as inhibitors of monoamine oxidase. Chem Biol Drug Des 87: 737–746. https://doi.org/10.1111/cbdd.12708

    Article  CAS  PubMed  Google Scholar 

  2. Aminin D, Polonik S (2020) 1,4-Naphthoquinones: some biological properties and application. Chem Pharm Bull 68: 46–57. https://doi.org/10.1248/cpb.c19-00911

    Article  Google Scholar 

  3. Sabutski YE, Menchinskaya ES, Shevchenko LS, Chingizova EA, Chingizov AR, Popov RS, Denisenko VA, Mikhailov VV, Aminin DL, Polonik SG (2020) Synthesis and evaluation of antimicrobial and cytotoxic activity of oxathiine-fused quinone-thioglucoside conjugates of substituted 1,4-Naphthoquinones. Molecules 25: 3577. https://doi.org/10.3390/molecules25163577

    Article  CAS  PubMed Central  Google Scholar 

  4. Menchinskaya E, Chingizova E, Pislyagin E, Likhatskaya G, Sabutski Y, Pelageev D, Polonik S, Aminin D (2021) Neuroprotective effect of 1,4-Naphthoquinones in an in vitro model of paraquat and 6-OHDA-induced neurotoxicity. Int J Mol Sci 22: 9933. https://doi.org/10.3390/ijms22189933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishchenko NP, Fedoreev SA (2003) Novyi original’nyi otechestvennyi preparat gistohrom®. Him-Farmacevt Zhurn 37: 49–53 (in Russ).

    Google Scholar 

  6. Egorov GB, Alyokhina A (1999) A new bioantioxidant histochrome in the clinic of eye diseases. Bulletin of Ophthalmology 115: 34–35 (in Russ).

    CAS  Google Scholar 

  7. Sakirova AN, Ivanova MV (1997) Pharmacokinetics and clinical efficacy of histochrome in patients with acute myocardial infarction. Experim and klin pharmacol 60: 21–24 (in Russ).

    Google Scholar 

  8. Lebedev AV, Levitskaya EL (2001) Antioxidant properties, autooxidation and mutagenic activity of ukhinochrome A in comparison with its esterified analog. BIOCHEMISTRY 66: 1089–1098 (in Russ).

    Google Scholar 

  9. Lebedev AV, Ivanova MV, Levitsky DO (2005) Echinochrome, a naturally occurring iron chelator and free radical scavenger in artificial and natural membrane systems. Life Sci 76: 863–875. https://doi.org/10.1016/j.lfs.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  10. Yurchenko AE (2015) Hsp70 induction and anticancer activity of U-133, the acetylated trisglucosydic derivative of echinochrome. Med Chem (Los Angeles) 5: 263–271. https://doi.org/10.4172/2161-0444.1000274

  11. Lazarev VF, Nikotina AD, Mikhaylova ER, Nudler E, Polonik SG, Guzhova IV, Margulis BA (2016) Hsp70 chaperone rescues C6 rat glioblastoma cells from oxidative stress by sequestration of aggregating GAPDH. Biochem Biophys Res Commun 470: 766–771. https://doi.org/10.1016/j.bbrc.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  12. Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B, Margulis BA, Guzhova IV, Nudler E (2018) New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson’s disease. Exp Neurol 306: 199–208. https://doi.org/10.1016/j.expneurol.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  13. Guzhova IV, Lazarev VF, Kaznacheeva AV, Ippolitova MV, Muronetz VI, Kinev AV, Margulis BA (2011) Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum Mol Genet 20: 3953–3963. https://doi.org/10.1093/hmg/ddr314

    Article  CAS  PubMed  Google Scholar 

  14. Belan DV, Polonik SG, Ekimova IV (2021) Assessment of the efficacy of preventive therapy with chaperone inducer U133 in a model of the preclinical stage of Parkinson’s disease in elderly rats. Neurosci Behav Physiol 51: 673–680. https://doi.org/10.1007/s11055-021-01120-3

    Article  CAS  Google Scholar 

  15. Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217: 51–63. https://doi.org/10.1083/jcb.201709072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pastukhov IuF, Khudik KA, Ekimova IV (2010) Chaperones in regulation and restoration of physiological functions]. Ross Fiziol Zh Im I M Sechenova 96(7): 708–725. (In Russ.) PMID: 20973175.

    CAS  PubMed  Google Scholar 

  17. Zatsepina OG, Evgen’ev MB, Garbuz DG (2021) Role of a heat shock transcription factor and the major heat shock protein Hsp70 in memory formation and neuroprotection. Cells 10: 1638. https://doi.org/10.3390/cells10071638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ekimova IV (2013) Somnogenic effect of exogenous heat shock protein 70 kDa is mediated by GABA(A) receptors in the preoptic area of the hypothalamus. Dokl Biol Sci 449: 89–92. https://doi.org/10.1134/S0012496613020130

    Article  CAS  PubMed  Google Scholar 

  19. Pastukhov IF, Simonova VV, Guzeev MA, Meshalkina DA, Guzhova IV, Ekimova IV (2015) Chaperone Hsp70 is involved in the molecular mechanisms of slow wave sleep regulation. Dokl Biochem Biophys 461: 76–79. https://doi.org/10.1134/S1607672915020040

    Article  CAS  PubMed  Google Scholar 

  20. Pastukhov YF, Simonova VV, Shemyakova TS, Guzeev MA, Polonik SG, Ekimova IV (2020) U-133, a chaperone inducer, eliminates sleep disturbances in a model of the preclinical stage of Parkinson’s disease in aged rats. Adv Gerontol 10: 254–259. https://doi.org/10.1134/S2079057020030133

    Article  Google Scholar 

  21. Ekimova IV, Pazi MB, Belan DV, Polonik SG, Pastukhov YF (2021) The chaperone inducer U133 eliminates anhedonia and prevents neurodegeneration in monoaminergic emotiogenic brain structures in a preclinical model of Parkinson’s disease in aged rats. J Evol Biochem Physiol 57: 1130–1141. https://doi.org/10.1134/S0022093021050148

    Article  Google Scholar 

  22. Porto RR, Dutra FD, Crestani AP, Holsinger RMD, Quillfeldt JA, Homem de Bittencourt PI, de Oliveira Alvares L (2018) HSP70 facilitates memory consolidation of fear conditioning through MAPK pathway in the hippocampus. Neuroscience 375: 108–118. https://doi.org/10.1016/j.neuroscience.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  23. Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21: 745–753. https://doi.org/10.1007/s12192-016-0709-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teiten M-H, Reuter S, Schmucker S, Dicato M, Diederich M (2009) Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett 279: 145–154. https://doi.org/10.1016/j.canlet.2009.01.031

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, Sun L, Zhang R, Wang Z (2015) Curcumin improves amyloid β-peptide (1-42) Induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 10: e0131525. https://doi.org/10.1371/journal.pone.0131525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polonik S, Tolkach A, Uvarova N (2004) Glycosylation of echinochrome and related hydroxynaphthazarines by the orthoester method. Zh Organ Khimii 30(2): 248–253. (In Russ).

    Google Scholar 

  27. Mishchenko NP, Fedoreev SA, Bagirova VL (2003) Histochrome: a new original domestic drug. Pharm Chem J 37: 48–52. https://doi.org/https://doi.org/10.1023/A:1023659331010

    Article  CAS  Google Scholar 

  28. Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65: 269–77. https://doi.org/10.18926/AMO/46853

    Article  CAS  PubMed  Google Scholar 

  29. Rothhaas R, Chung S (2021) Role of the preoptic area in sleep and thermoregulation. Front Neurosci 15: 664781. https://doi.org/10.3389/fnins.2021.664781

    Article  PubMed  PubMed Central  Google Scholar 

  30. Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HIL (2022) Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer’s disease. Sleep Med Rev 62: 101592. https://doi.org/10.1016/j.smrv.2022.101592

    Article  PubMed  Google Scholar 

  31. Oishi Y, Lazarus M (2017) The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 118: 66–73. https://doi.org/10.1016/j.neures.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  32. Mather M, Harley CW (2016) The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn Sci 20: 214–226. https://doi.org/10.1016/j.tics.2016.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. D’Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, Cohen JD (2012) Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc Natl Acad Sci 109: 19900–19909. https://doi.org/10.1073/pnas.1116727109

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCoy JG, Strecker RE (2011). The cognitive cost of sleep lost. Neurobiology of learning and memory 6(4): 564–582. https://doi.org/10.1016/j.nlm.2011.07.004.

    Article  Google Scholar 

  35. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, Walker MP. (2017) The sleep-deprived human brain. Nat Rev Neurosci. 18(7): 404-418. https://doi.org/10.1038/nrn.2017.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simonova VV, Guzeev MA, Ekimova IV, Pastukhov YF (2022) Chaperone Hsp70 (HSPA1) is involved in the molecular mechanisms of sleep cycle integration. Int J Mol Sci 23: 4464. https://doi.org/10.3390/ijms23084464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ekimova IV, Pastukhov YF (2014) The role of adenosine A2A receptors of the preoptic area in somnogenic activity of 70 kDa protein in pigeons. J Evol Biochem Physiol 50: 492–499. https://doi.org/10.1134/S0022093014060039

    Article  CAS  Google Scholar 

  38. Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV (2010) Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 115: 1035–1044. https://doi.org/10.1111/j.1471-4159.2010.06989.x

    Article  CAS  PubMed  Google Scholar 

  39. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150: 549–562. https://doi.org/10.1016/j.cell.2012.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Varodayan FP, Pignataro L, Harrison NL (2011) Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1. Neuroscience 193: 63–71. https://doi.org/10.1016/j.neuroscience.2011.07.035

    Article  CAS  PubMed  Google Scholar 

  41. Varodayan F (2013) HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release. Front Integr Neurosci 7: 89. https://doi.org/10.3389/fnint.2013.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pignataro L, Miller AN, Ma L, Midha S, Protiva P, Herrera DG, Harrison NL (2007) Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci 27: 12957–12966. https://doi.org/10.1523/JNEUROSCI.4142-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pastukhov YF, Ekimova IV, Khudik KA, Guzhova IV (2008) Protein 70 kDa in the control of sleep and thermoregulation. J Evol Biochem Physiol 44: 74–81. https://doi.org/10.1134/S002209300801009X

    Article  CAS  Google Scholar 

  44. Beck CD, Rankin CH (1995) Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. Learn Mem 2: 161–177. https://doi.org/10.1101/lm.2.3-4.161

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. M.A. Gezeyev for his methodological assistance with polysomnographic experiments. Along with biochemical studies, the latter were carried out in the Center for Collective Use at the IEPhB.

Funding

The work was implemented within the state assignment to the IEPhB; theme reg. no. АААА-А18-118012290427-7.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (I.V.E.); data collection (N.S.K., M.B.P., M.V.Ch.); data analysis (N.S.K., M.B.P., M.V.Ch., Yu.F.P., I.V.E.); rough draft preparation (N.S.K., M.B.P., M.V.Ch.); article writing and editing (I.V.E., Yu.F.P.).

Corresponding author

Correspondence to I. V. Ekimova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest that would relate to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 8, pp. 984–996https://doi.org/10.31857/S0869813922080027.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekimova, I.V., Kurmazov, N.S., Pazi, M.B. et al. Effects of the Chaperone Inducer U133 on Sleep–Wake Cycle Temporal Characteristics and Spatial Memory. J Evol Biochem Phys 58, 1214–1224 (2022). https://doi.org/10.1134/S002209302204024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302204024X

Keywords:

Navigation