Skip to main content
Log in

Age-Related Changes in Microglia of the Rat Spinal Cord

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate age-related changes in microglial cells in various regions of the cervical spinal cord in young (4 months) and aging (18 months) rats using immunohistochemical markers. Antibodies to the calcium-binding protein Iba-1 were used to identify microglial cells, and those to the neuronal nuclear antigen (NeuN)—to assess the age-related dynamics in the number of spinal cord neurons. Regional differences were revealed in the reaction of microgliocytes during aging. Reactive changes in microgliocytes of aging rats were more pronounced in the white rather than the gray matter of the spinal cord, probably due to active processes of de- and remyelination of spinal cord nerve fibers, as observed during late ontogeny. The microglia of the dorsal and ventral funiculi underwent maximum changes. It is these pathways that are known to provide the perception of sensory information from external stimuli, the assessment of its type and intensity, as well as the resultant motor activity. The previously undescribed aggregates of activated microgliocytes were identified in the region of the dorsal and ventral funiculi, presumably involved in demyelination. Our results argue in favor of the involvement of microglia in age-related sensory impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21: 1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu Y, Jin MZ, Yang ZY, Jin WL (2021) Microglia in neurodegenerative diseases. Neural Regen Res 16: 270–280. https://doi.org/10.4103/1673-5374.290881

    Article  PubMed  Google Scholar 

  3. Yoo H-J, Kwon M-S (2021) Aged microglia in neurodegenerative diseases: microglia lifespan and culture methods. Front Aging Neurosci 13: 766267. https://doi.org/10.3389/fnagi.2021.766267

    Article  CAS  PubMed  Google Scholar 

  4. Tremblay MÈ (2011) The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies. Neuron Glia Biol 7(1): 67–76. https://doi.org/10.1017/S1740925X12000038

    Article  PubMed  Google Scholar 

  5. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35: 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolos EA, Korzhevskii DE (2020) Spinal cord microglia in health and disease. Acta Naturae 12(1): 4–17. https://doi.org/10.32607/actanaturae.10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10: 263–276. https://doi.org/10.1111/j.1474-9726.2010.00660.x

    Article  CAS  PubMed  Google Scholar 

  8. Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ (2012). Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 33: 195 e1–e12. https://doi.org/10.1016/j.neurobiolaging.2010.05.008

    Article  CAS  Google Scholar 

  9. Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26: 754–765. https://doi.org/10.1016/j.bbi.2011.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nikodemova M, Small AL, Kimyon RS, Watters JJ (2016) Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics 48(5): 336–344. https://doi.org/10.1152/physiolgenomics.00129.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stojiljkovic MR, Ain Q, Bondeva T, Heller R, Schmeer C, Witte OW (2019) Phenotypic and functional differences between senescent and aged murine microglia. Neurobiol Aging 74: 56–69. https://doi.org/10.1016/j.neurobiolaging.2018.10.007

    Article  PubMed  Google Scholar 

  12. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34: 721–733. https://doi.org/10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  13. Streit WJ, Xue Q-S (2010) The brain’s aging immune system. Aging Dis 1(3): 254–261.

    PubMed  PubMed Central  Google Scholar 

  14. Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry 17: 549–558. https://doi.org/10.1038/mp.2011.81

    Article  Google Scholar 

  15. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7: 124. https://doi.org/10.3389/fnagi.2015.00124

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salas IH, Burgado J, Allen NJ (2020) Glia: victims or villains of the aging brain? Neurobiol Disease 143: 105008. https://doi.org/10.1016/j.nbd.2020.105008

    Article  Google Scholar 

  17. Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL (2021). The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 197: 111512. https://doi.org/10.1016/j.mad.2021.111512

    Article  CAS  PubMed  Google Scholar 

  18. Xuan FL, Chithanathan K, Lilleväli K, Yuan X, Tian L (2019) Differences of microglia in the brain and the spinal cord. Front Cell Neurosci 14(13): 504. https://doi.org/10.3389/fncel.2019.00504

    Article  CAS  Google Scholar 

  19. Kullberg S, Aldskogius H, Ulfhake B (2001) Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Res 899: 169–186. https://doi.org/10.1016/S0006-8993(01)02222-3

    Article  CAS  PubMed  Google Scholar 

  20. Chung JY, Choi JH, Lee CH, Yoo KY, Won MH, Yoo DY, Kim DW, Choi SY, Youn HY, Moon SM, Hwang IK (2010) Comparison of ionized calcium-binding adapter molecule 1-immunoreactive microglia in the spinal cord between young adult and aged dogs. Neurochem Res 35: 620–627. https://doi.org/10.1007/s11064-009-0108-4

    Article  CAS  PubMed  Google Scholar 

  21. Lee S, Wu Y, Shi XQ, Zhang J (2015) Characteristics of spinal microglia in aged and obese mice: potential contributions to impaired sensory behavior. Immunity & Ageing 12: 22. https://doi.org/10.1186/s12979-015-0049-5

    Article  CAS  Google Scholar 

  22. Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD (2015) Age- and location-related changes in microglial function. Neurobiol Aging 36: 2153–2163. https://doi.org/10.1016/j.neurobiolaging.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  23. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP (2015) Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem 59(3): 233–237. https://doi.org/10.4081/ejh.2015.2530

    Article  CAS  Google Scholar 

  24. Kongsui R, Beynon SB, Johnson SJ, Walker FR (2014) Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflam 11: 182. https://doi.org/10.1186/s12974-014-0182-7

    Article  Google Scholar 

  25. Streit WJ, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2: 142. https://doi.org/10.1186/s40478-014-0142-6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tremblay ME, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60: 541–558. https://doi.org/10.1002/glia.22287

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shahidehpour RK, Higdon RE, Crawford NG, Neltner JH, Ighodaro ET, Patel E, Price D, Nelson PT, Bachstetter AD (2021) Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol Aging 99: 19–27. https://doi.org/10.1016/j.neurobiolaging.2020.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf W P, Bayer H, Kiechle M, Feiler MS, Freischmidt A, Brenner D, Witting A, Hengerer B, Fändrich M, Ludolph AC, Weishaupt JH, Gillardon F, Danzer KM (2016). Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol 131: 379–391. https://doi.org/10.1007/s00401-015-1504-2

    Article  CAS  PubMed  Google Scholar 

  29. Yanguas-Casás N, Crespo-Castrillo A, Arevalo MA, Garcia-Segura LM (2020) Aging and sex: Impact on microglia phagocytosis. Aging Cell 19(8): e13182. https://doi.org/10.1111/acel.13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang B, Gensel JC (2014) Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol 258: 112–120. https://doi.org/10.1016/j.expneurol.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  31. Maxwell N, Castro RW, Sutherland NM, Vaughan KL, Szarowicz MD, de Cabo R, Mattison A, Valdez G (2018) α-Motor neurons are spared from aging while their synaptic inputs degenerate in monkeys and mice. Aging Cell 17: e12726. https://doi.org/10.1111/acel.12726

    Article  CAS  PubMed Central  Google Scholar 

  32. Azam S, Haque M, Kim IS, Choi DK (2021) Microglial turnover in ageing-related neurodegeneration: therapeutic avenue to intervene in disease progression. Cells 10(1): 150. https://doi.org/10.3390/cells10010150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carvalho WA, Bahia CP, Teixeira JC, Gomes-Leal W, Pereira A (2017) Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Front Neuroanat 11: 89. https://doi.org/10.3389/fnana.2017.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bieler L, Grassner L, Zaunmair P, Kreutzer C, Lampe L, Trinka E, Marschallinger J, Aigner L, Couillard-Despres S (2018) Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts. Heliyon 4: e00540. https://doi.org/10.1016/j.heliyon.2018.e00540

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G (2016) Sensorimotor Integration by Corticospinal System. Front Neuroanat 10: 24. https://doi.org/10.3389/fnana.2016.00024

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alam M, Garcia-Alias G, Jin B, Keyes J, Zhong H, Roy RR, Gerasimenko Y, Lu DC, Edgerton VR (2017) Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats. Exp Neurol 291: 141–150. https://doi.org/10.1016/j.expneurol.2017.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xie F, Zhang JC, Fu H, Chen J (2013) Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 32: 1021–1028. https://doi.org/10.3892/ijmm.2013.1486

    Article  CAS  PubMed  Google Scholar 

  38. Bergman E, Ulfhake B (1998) Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol 396: 211–222.

    Article  CAS  Google Scholar 

  39. Pannese E, Sartori P, Martinelli C, Ledda M (1998) Age-related decrease in the overall extent of perikaryal projections in rabbit spinal ganglion neurons. Neurosci Lett 254: 177–179.

    Article  CAS  Google Scholar 

  40. Vaughan SK, Stanley OL, Valdez G (2017) Impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers in mice. J Gerontol A Biol Sci Med Sci 72(6): 771–779. https://doi.org/10.1093/gerona/glw175

    Article  CAS  PubMed  Google Scholar 

  41. Kolos EA, Korzhevskii DE (2020) Immunohistological detection of active satellite cellsin rat dorsal root ganglia after parenteral administration of lipopolysaccharide and during aging. Bull Exp Biol Med 169(5): 665–668. https://doi.org/10.1007/s10517-020-04950-2

    Article  CAS  PubMed  Google Scholar 

  42. Thériault P, Rivest S (2016) Microglia: senescence impairs clearance of myelin debris. Current Biol 26(16): R772–R775. https://doi.org/10.1016/j.cub.2016.06.066

    Article  CAS  Google Scholar 

  43. Pinto MV, Fernandes A (2020) Microglial phagocytosis-rational but challenging therapeutic target in multiple sclerosis. Int J Mol Sci 21(17): 5960. https://doi.org/10.3390/ijms21175960

    Article  CAS  PubMed Central  Google Scholar 

  44. Sen MK, Mahns DA, Coorssen JR, Shortland PJ (2022) The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 70(7): 1215–1250. https://doi.org/10.1002/glia.24148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rawji KS, Kappen J, Tang W, Teo W, Plemel JR, Stys PK, Yong VW (2018) Deficient surveillance and phagocytic activity of myeloid cells within demyelinated lesions in aging mice visualized by ex vivo live multiphoton imaging. J Neurosci 38 (8): 1973–1988. https://doi.org/10.1523/JNEUROSCI.2341-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK, Tremblay MÈ, Rivest S (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212 (4): 481–495. https://doi.org/10.1084/jem.20141656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15(8): 447–458. https://doi.org/10.1038/s41582-019-0184-2

    Article  PubMed  Google Scholar 

  48. Shen K, Reichelt M, Kyauk R, Ngu H, Shen Y, Foreman O, Modrusan Z, Friedman BA, Sheng M, Yuen TJ (2021) Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep 34(10): 108835. https://doi.org/10.1016/j.celrep.2021.108835

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was implemented within the state assignment to the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Contributions

E.A.K. and D.E.K. equally contributed to the development experimental design, data collection and analysis, as well as writing a manuscript.

Corresponding author

Correspondence to E. A. Kolos.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 7, pp. 890–902https://doi.org/10.31857/S0869813922070044.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolos, E.A., Korzhevskii, D.E. Age-Related Changes in Microglia of the Rat Spinal Cord. J Evol Biochem Phys 58, 1142–1151 (2022). https://doi.org/10.1134/S0022093022040172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040172

Keywords:

Navigation