Skip to main content
Log in

Use of Naïve Bayes Classifier to Assess the Effects of Antipsychotic Agents on Brain Electrical Activity Parameters in Rats

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Research and development of novel methods to determine the effects of antipsychotic agents is an important challenge for experimental biomedicine. Although behavioural tests, the ones most commonly used for pharmacological screening, are quite efficient for the evaluation of drug effects on animal anxiety and locomotion, they hardly allow to detect antipsychotic activity. Pharmacoelectroencephalography (pharmaco-EEG), which is based on the principle of different psychoactive agents producing distinct changes in brain electrical activity, could represent a viable alternative approach to that task. The rapid evolution of machine learning techniques has opened new possibilities for using pharmaco-EEG data for the purposes of classification and prediction. This work describes an experimental approach to the assessment of specific activity and pharmacological profiling of antipsychotic agents using naïve Bayes classifier, a simple probabilistic classifier widely employed in biomedical research. The experiments were conducted in white outbred male rats with chronically implanted electrocorticographic electrodes. To serve as the training set, a library was assembled containing electrocorticograms (ECoG) following the administration of antipsychotic agents: chlorpromazine, haloperidol, droperidol, tiapride, and sulpiride. For each sample, ECoG parameters before and after drug administration were calculated, and a total of 132 amplitude and spectral signal parameters were taken into analysis. Principal component analysis was used to reduce dimensionality. Using naïve bayes classifier, we were able to detect and qualify distinct effects of antipsychotic agents on brain electrical activity parameters in rats, allowing them to be differentiated from phenazepam, a benzodiazepine tranquilizer with sedative properties. Moreover, this approach proved effective to distinguish among the antipsychotics as well as between them and other agents with similar receptor binding affinity profiles, e.g., the tricyclic antidepressant amitriptyline. Thus, the method we propose can be used to discern between antipsychotic and sedative effects of drugs as well as to compare the effects across different antipsychotic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lally J, MacCabe JH (2015) Antipsychotic medication in schizophrenia: a review. Br Med Bull 114(1): 169–179. https://doi.org/10.1093/bmb/ldv017

    Article  CAS  PubMed  Google Scholar 

  2. Drobizhev MYu, Ovchinnikov AA (2010) Antipsychotics: replacing the old generations with a new classification? Sotsialnaia i klinicheskaia psikhiatriia 20(2): 80–87. (In Russ).

    Google Scholar 

  3. Kalitin KY, Spasov AA, Mukha OY, Pridvorov GV, Lipatov VA (2021) Pharmacological targets and the mechanism of action of antipsychotic agents in the framework of the neurochemical theory of the pathogenesis of schizophrenia. Russ J Physiol 107(8): 927–954. https://doi.org/10.31857/S0869813921080070

    Article  Google Scholar 

  4. Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG (2019) An Overview of Animal Models Related to Schizophrenia. Can J Psychiatry 64(1): 5–17. https://doi.org/10.1177/0706743718773728

    Article  PubMed  Google Scholar 

  5. Ang MJ, Lee S, Kim JC, Kim SH, Moon C (2021) Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 19(5): 641–664. https://doi.org/10.2174/1570159X18666200814175114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Itil T, Shapiro D, Hickman C, Fink M, Kiremitci N (1968) The differentiation of tranquilizers by quantitative EEG. Electroencephalogr Clin Neurophysiol 24(3): 288.

    CAS  PubMed  Google Scholar 

  7. Itil TM, Ulett GA, Fukuda T (1971) Quantitative pharmaco-electroencephalography in early evaluation of psychotropic drugs. Folia Psychiatr Neurol Jpn 25(3): 195–202. https://doi.org/10.1111/j.1440-1819.1971.tb01503.x

    Article  CAS  PubMed  Google Scholar 

  8. Karkischenko NN, Karkischenko VN, Fokin YuV, Taboyakova LA, Alimkina OV, Borisova MM (2020) Between Cognitivity and Neuropathies: Neuroimaging of the Effects of GABAergic Modulation of the Hippocampus and Prefrontal Neocortexis by Normalized Brain Electrograms. J Biomed 16(2): 12–38. https://doi.org/10.33647/2074-5982-16-2-12-38

    Article  Google Scholar 

  9. Karkischenko NN, Fokin YuV, Taboyakova LA, Alimkina OV, Borisova MM (2020) New Biomedical Approaches in Information and Cognitive Technologies of Psychopathology Modeling. J Biomed 16(3): 35–38. https://doi.org/10.33647/2074-5982-16-3-35-38

    Article  Google Scholar 

  10. Kudelina OM, Safronenko AV, Maklyakov YuS, Gantsgorn EV, Morozov NM, Jabr MA (2020) Analytical Evaluation of Treating Depression in Animal Models by Quantitative Pharmaco-EEG. J Biomed 16(3): 43–47. https://doi.org/10.33647/2074-5982-16-3-43-47

    Article  Google Scholar 

  11. Yakovlev OA, Vakhviyaynen MS, Yudin MA (2020) Pharmaco-EEG as a Method for Determining the Threshold Dose of Neurotropic Substances. J Biomed 16(3): 39–42. https://doi.org/10.33647/2074-5982-16-3-39-42

    Article  Google Scholar 

  12. Patel L, Shukla T, Huang X, Ussery DW, Wang S (2020) Machine Learning Methods in Drug Discovery. Molecules 25(22): 5277. https://doi.org/10.3390/molecules25225277

    Article  CAS  PubMed Central  Google Scholar 

  13. Guo B, Zheng Q (2015) Using Naïve Bayes Algorithm to Estimate the Response to Drug in Lung Cancer Patients. Comb Chem High Throughput Screen 21(10): 734–748. https://doi.org/10.2174/1386207322666190125151624

    Article  CAS  Google Scholar 

  14. Muchira JM, Gona PN, Leveille S, Hayman LL (2019) A Review of Methodological Approaches for Developing Diagnostic Algorithms for Diabetes Screening. J Nurs Meas 27(3): 433–457. https://doi.org/10.1891/1061-3749.27.3.433

    Article  PubMed  Google Scholar 

  15. Zhang H, Ding L, Zou Y, Hu SQ, Huang HG, Kong WB, Zhang J (2016) Predicting drug-induced liver injury in human with Naïve Bayes classifier approach. J Comput Aided Mol Des 30(10): 889–898. https://doi.org/10.1007/s10822-016-9972-6

    Article  CAS  PubMed  Google Scholar 

  16. Rescorla M (2021) Bayesian modeling of the mind: from norms to neurons. Wiley Interdiscip Rev Cogn Sci 12(1): e1540. https://doi.org/10.1002/wcs.1540

    Article  PubMed  Google Scholar 

  17. Sysoev YuI, Prikhodko VA, Idiyatullin RD, Chernyakov RT, Karev VE, Okovityi SV (2022) A Method for Chronic Registration of Brain Cortical Electrical Activity in Rats. Russ J Physiol 108(2): 279–290. https://doi.org/10.1134/S0869813919060074

    Article  Google Scholar 

  18. Hansen IH, Agerskov C, Arvastson L, Bastlund JF, Sørensen HBD, Herrik KF (2019) Pharmaco-electroencephalographic responses in the rat differ between active and inactive locomotor states. Eur J Neurosci 50(2): 1948–1971. https://doi.org/10.1111/ejn.14373

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu C (2020) Targeting the cholinergic system in Parkinson's disease. Acta Pharmacol Sin 41(4): 453–463. https://doi.org/10.1038/s41401-020-0380-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dimpfel W (2009) Rat electropharmacograms of the flavonoids rutin and quercetin in comparison to those of moclobemide and clinically used reference drugs suggest antidepressive and/or neuroprotective action. Phytomedicine 16(4): 287–294. https://doi.org/10.1016/j.phymed.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  21. Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW (2017) MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 234(19): 2837–2857. https://doi.org/10.1007/s00213-017-4679-5

  22. Scatton B, Cohen C, Perrault G, Oblin A, Claustre Y, Schoemaker H, Sanger DJ, Rouquier L, Porsolt R (2001) The preclinical pharmacologic profile of tiapride. Eur Psychiatry 16 (Suppl 1): 29s–34s. https://doi.org/10.1016/s0924-9338(00)00526-5

    Article  PubMed  Google Scholar 

  23. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3): 303–304. https://doi.org/10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  24. McClure EW, Daniels RN (2021) Classics in Chemical Neuroscience: Amitriptyline. ACS Chem Neurosci 12(3): 354–362. https://doi.org/10.1021/acschemneuro.0c00467

    Article  CAS  PubMed  Google Scholar 

  25. Donahue TJ, Hillhouse TM, Webster KA, Young R, De Oliveira EO, Porter JH (2017) Discriminative stimulus properties of the atypical antipsychotic amisulpride: comparison to its isomers and to other benzamide derivatives, antipsychotic, antidepressant, and antianxiety drugs in C57BL/6 mice. Psychopharmacology (Berl) 234(23–24): 3507–3520. https://doi.org/10.1007/s00213-017-4738-y

  26. Li P, Snyder GL, Vanover KE (2016) Dopamine Targeting Drugs for the Treatment of Schizophrenia: Past, Present and Future. Curr Top Med Chem 16(29): 3385–3403. https://doi.org/10.2174/1568026616666160608084834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yonemura K, Miyanaga K, Machiyama Y (1998) Profiles of the affinity of antipsychotic drugs for neurotransmitter receptors and their clinical implication. Kitakanto Med J 48(2): 87–102. https://doi.org/10.2974/kmj.48.87

    Article  CAS  Google Scholar 

  28. Dose M, Lange HW (2000) The benzamide tiapride: treatment of extrapyramidal motor and other clinical syndromes. Pharmacopsychiatry 33(1): 19–27. https://doi.org/10.1055/s-2000-7964

    Article  CAS  PubMed  Google Scholar 

  29. Haddad PM, Sharma SG (2007) Adverse effects of atypical antipsychotics: differential risk and clinical implications. CNS Drugs 21(11): 911–936. https://doi.org/10.2165/00023210-200721110-00004

    Article  CAS  PubMed  Google Scholar 

  30. Krijzer F, Koopman P, Olivier B (1993) Classification of psychotropic drugs based on pharmaco-electrocorticographic studies in vigilance-controlled rats. Neuropsychobiology 28(3): 122–37. https://doi.org/10.1159/000119015

    Article  CAS  PubMed  Google Scholar 

  31. Nordin C, Krijzer F (1996) Antidepressant and anxiolytic profiles of E-10-hydroxynortriptyline on electrocorticograms of rats. Neuropsychobiology 34(1): 44–48. https://doi.org/10.1159/000119290

    Article  CAS  PubMed  Google Scholar 

  32. Papp N, Vas S, Bogáthy E, Kátai Z, Kostyalik D, Bagdy G (2018) Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Eur J Pharm Sci 121: 347–355. https://doi.org/10.1016/j.ejps.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  33. Rujiralai T, Puangpairote T, Cheaha D (2021) Characterization of pharmaco-EEG fingerprint and sleep-wake profiles of Lavandula angustifolia Mill. essential oil inhalation and diazepam administration in rats. J Ethnopharmacol 276: 114193. https://doi.org/10.1016/j.jep.2021.114193

    Article  CAS  PubMed  Google Scholar 

  34. Depoortere H, Decobert M, Granger P, Riou-Merle F (1986) Hypnotics: clinical value of pharmaco-EEG methods. Neuropsychobiology 16(2–3): 157–162. https://doi.org/10.1159/000118318

    Article  CAS  PubMed  Google Scholar 

  35. Krijzer F, Snelder M, Bradford D (1984) Comparison of the (pro)convulsive properties of fluvoxamine and clovoxamine with eight other antidepressants in an animal model. Neuropsychobiology 12(4): 249–254. https://doi.org/10.1159/000118147

    Article  CAS  PubMed  Google Scholar 

  36. Dimpfel W, Decker H (1985) Classification of sulpiride, clozapine and haloperidol by toposelective recording from different brain structures in the immobilized rat (stereo-EEG). Neuropsychobiology 14(3): 157–164. https://doi.org/10.1159/000118220

    Article  CAS  PubMed  Google Scholar 

  37. Dimpfel W (2003) Preclinical data base of pharmaco-specific rat EEG fingerprints (tele-stereo-EEG). Eur J Med Res 8(5): 199–207.

    CAS  PubMed  Google Scholar 

  38. Dimpfel W (2013) Pharmacological classification of herbal extracts by means of comparison to spectral EEG signatures induced by synthetic drugs in the freely moving rat. J Ethnopharmacol 149(2): 583–589. https://doi.org/10.1016/j.jep.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  39. Karkischenko NN, Fokin YuV, Karkischenko VN, Taboyakova LA, Kharitonov SYu, Alimkina OV (2020) New approaches to the assessment of intracentral relations in terms of operant behavior and electrograms of the brain of cats. J Biomed 4: 4–17. (In Russ).

    Google Scholar 

  40. Karkischenko NN, Karkischenko VN, Fokin YuV, Kharitonov SYu (2019) Neuroimaging of the effects of psychoactive substances by means of normalization of brain electrograms. J Biomed 1: 12–34. https://doi.org/10.33647/2074-5982-15-1-12-34

    Article  Google Scholar 

  41. Fokin YuV, Karkischenko NN, Borisova MM (2020) Neurovisualization of Pharmaco-EEG Effects of Leutragine by Normalized Cat Brain Electrograms. J Biomed 16(4): 71–82. https://doi.org/10.33647/2074-5982-16-4-71-82

    Article  Google Scholar 

Download references

Funding

The work was performed using the equipment of the Analytical Center of the Russian Ministry of Health under Agreement No. 075-15-2021-685 of July 26, 2021, funded by the Russian Ministry of Education and Science. This work was performed within project ID: 93022798 (for Y.S.) of the St. Petersburg State University, St. Petersburg, Russia, and supported by the Russian Science Foundation grant 22-15-00092 (for developing of experimental setup).

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning of (Y.I.S., S.V.O.) conducting experiments and data processing (Y.I.S., D.D.S., M.M.P., V.A.P., R.D.I., A.A.K.), preparing illustrations (Y.I.S., D.D.S., V.A.P.), preparing and editing the manuscript (Y.I.S., V.A.P., S.V.O.).

Corresponding author

Correspondence to Yu. I. Sysoev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 7, pp. 874–889https://doi.org/10.31857/S0869813922070093.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysoev, Y.I., Shits, D.D., Puchik, M.M. et al. Use of Naïve Bayes Classifier to Assess the Effects of Antipsychotic Agents on Brain Electrical Activity Parameters in Rats. J Evol Biochem Phys 58, 1130–1141 (2022). https://doi.org/10.1134/S0022093022040160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040160

Keywords:

Navigation