Skip to main content
Log in

Prospects for Gene Therapy of Epilepsy Using Calcium-Acivated Potassium Channel Vectors

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Epilepsy is one of the widespread neurological human diseases, and nearly a third of patients are not completely relieved from epileptic seizures by anticonvulsants. Therefore, the search and development of new treatment approaches for epilepsy remains one of the urgent challenges for modern basic neurobiology and clinical neurology. In recent years, gene therapy for epilepsy has been attracting ever-increasing attention of researchers. Currently, the priority trend of gene therapy is the overexpression of the genes in neurons, which reduce the activity of neural networks in the epileptic focus, including the expression of both channel proteins and inhibitory neuromodulators. In this review, we address the possibility of using overexpression of calcium-activated potassium channels. In this review, we address the possibility of using overexpression of calcium-activated potassium channels. The advantage of choosing this subgroup of channels for gene therapy lies in the fact that maximal activation of calcium-activated potassium channels and their hyperpolarizing effects are implemented during intracellular calcium accumulation, which is exactly observed during epileptic activity in neural networks. Several subtypes of calcium-activated potassium channels are expressed in mammalian cells. Analysis of the available experimental and clinical data shows that intermediate-conductance and small-conductance calcium-activated potassium channels (IK and SK channels, respectively) may have a high potential for gene therapy for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Banerjee PN, Filippi D, Hauser AW (2009) The descriptive epidemiology of epilepsy—A review. Epilepsy Res 85: 31–45. https://doi.org/10.1016/j.eplepsyres.2009.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janmohamed M, Brodie MJ, Kwan P (2020) Pharmacoresistance—Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology 168: 107790. https://doi.org/10.1016/j.neuropharm.2019.107790

    Article  CAS  PubMed  Google Scholar 

  3. Engel J (2018) The current place of epilepsy surgery. Curr Opin Neurol 31: 192–197. https://doi.org/10.1097/WCO.0000000000000528

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schramm J (2008) Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia 49: 1296–307. https://doi.org/10.1111/j.1528-1167.2008.01604.x

    Article  PubMed  Google Scholar 

  5. Walker MC, Kullmann DM (2020) Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 168: 107751. https://doi.org/10.1016/j.neuropharm.2019.107751

    Article  CAS  PubMed  Google Scholar 

  6. Simonato M (2014) Gene therapy for epilepsy. Epilepsy Behav 38: 125–130. https://doi.org/10.1016/j.yebeh.2013.09.013

    Article  PubMed  Google Scholar 

  7. Wang D, Gao G (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18: 151–161.

    PubMed  PubMed Central  Google Scholar 

  8. Thomas RH, Berkovic SF (2014) The hidden genetics of epilepsy—a clinically important new paradigm. Nat Rev Neurol 10: 283–292. https://doi.org/10.1038/nrneurol.2014.62

    Article  PubMed  Google Scholar 

  9. McCown TJ (2006) Adeno-associated Virus-Mediated Expression and Constitutive Secretion of Galanin Suppresses Limbic Seizure Activity in Vivo. Mol Ther 14: 63–68. https://doi.org/10.1016/J.YMTHE.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Noè F, Pool AH, Nissinen J, Gobbi M, Bland R, Rizzi M, Balducci C, Ferraguti F, Sperk G, During MJ, Pitkänen A, Vezzani A (2008) Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131: 1506–1515. https://doi.org/10.1093/BRAIN/AWN079

    Article  PubMed  Google Scholar 

  11. Bernard C (2012) Treating Epilepsy with a Light Potassium Diet. Sci Transl Med 4 (161): fs40. https://doi.org/10.1126/SCITRANSLMED.3005297

    Article  Google Scholar 

  12. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4: 161ra152. https://doi.org/10.1126/scitranslmed.3004190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snowball A, Chabrol E, Wykes RC, Shekh-Ahmad T, Cornford JH, Lieb A, Hughes MP, Massaro G, Rahim AA, Hashemi KS, Kullmann DM, Walker MC, Schorge S (2019) Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci 39: 3159–3169. https://doi.org/10.1523/JNEUROSCI.1143-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nikitin ES, Balaban PM (2021) Diversity and Functional Features of Calcium-Dependent Potassium Channels as Determinants of Their Role in the Plasticity of Cerebral Neurons. Neurosci Behav Physiol 519 (51): 1239–1243. https://doi.org/10.1007/S11055-021-01186-Z

    Article  Google Scholar 

  15. Trimmer JS (2015) Subcellular Localization of K+ Channels in Mammalian Brain Neurons: Remarkable Precision in the Midst of Extraordinary Complexity. Neuron 85: 238–256. https://doi.org/10.1016/j.neuron.2014.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bell TJ, Miyashiro KY, Sul J-Y, Buckley PT, Lee MT, McCullough R, Jochems J, Kim J, Cantor CR, Parsons TD, Eberwine JH (2010) Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci USA 107: 21152–21157. https://doi.org/10.1073/pnas.1015264107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tian Y, Liao IH, Zhan X, Gunther JR, Ander BP, Liu D, Lit L, Jickling GC, Corbett BA, Bos-Veneman NGP, Hoekstra PJ, Sharp FR (2011) Exon expression and alternatively spliced genes in tourette syndrome. Am J Med Genet Part B Neuropsychiatr Genet 156: 72–78. https://doi.org/10.1002/ajmg.b.31140

    Article  Google Scholar 

  18. Ghatta S, Nimmagadda D, Xu X, O’Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110: 103–116. https://doi.org/10.1016/j.pharmthera.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca 2+ -activated K + channels: A transmembrane β-subunit homolog. Proc Natl Acad Sci USA 96: 4137–4142. https://doi.org/10.1073/pnas.96.7.4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meera P, Wallner M, Toro L (2000) A neuronal β subunit (KCNMB4) makes the large conductance, voltage- and Ca 2+ -activated K + channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA 97: 5562–5567. https://doi.org/10.1073/pnas.100118597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia X-M, Ding JP, Lingle CJ (1999) Molecular Basis for the Inactivation of Ca 2+ - and Voltage-Dependent BK Channels in Adrenal Chromaffin Cells and Rat Insulinoma Tumor Cells. J Neurosci 19: 5255–5264. https://doi.org/10.1523/JNEUROSCI.19-13-05255.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion N V., Maylie J, Adelman JP (1996) Small-Conductance, Calcium-Activated Potassium Channels from Mammalian Brain. Science (80) 273: 1709–1714. https://doi.org/10.1126/science.273.5282.1709

  23. King B, Rizwan AP, Asmara H, Heath NC, Engbers JDT, Dykstra S, Bartoletti TM, Hameed S, Zamponi GW, Turner RW (2015) IKCa Channels Are a Critical Determinant of the Slow AHP in CA1 Pyramidal Neurons. Cell Rep 11: 175–182. https://doi.org/10.1016/j.celrep.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  24. Joiner WJ, Wang L-Y, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94: 11013–11018. https://doi.org/10.1073/pnas.94.20.11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Higham J, Sahu G, Wazen R-M, Colarusso P, Gregorie A, Harvey BSJ, Goudswaard L, Varley G, Sheppard DN, Turner RW, Marrion NV (2019) Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca 2+-Activated Potassium Channels. Mol Pharmacol 96: 115–126. https://doi.org/10.1124/mol.118.115634

    Article  CAS  PubMed  Google Scholar 

  26. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465. https://doi.org/10.1038/nrn2148

    Article  CAS  PubMed  Google Scholar 

  27. Roshchin MV, Ierusalimsky VN, Balaban PM, Nikitin ES (2020) Ca2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep 10: 14484. https://doi.org/10.1038/s41598-020-71415-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikitin E, Vinogradova L (2021) Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 25: 223–235. https://doi.org/10.1080/14728222.2021.1908263

    Article  CAS  PubMed  Google Scholar 

  29. Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K v 7.2 potassium channel subunits. Proc Natl Acad Sci USA 110: 4386–4391. https://doi.org/10.1073/pnas.1216867110

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, Oliver KL, Mazarib A, Afawi Z, Korczyn A, Plazzi G, Petrou S, Berkovic SF, Scheffer IE, Dibbens LM (2012) Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 44: 1188–1190. https://doi.org/10.1038/ng.2440

    Article  CAS  PubMed  Google Scholar 

  31. Miller JP, Moldenhauer HJ, Keros S, Meredith AL (2021) An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels 15: 447–464. https://doi.org/10.1080/19336950.2021.1938852

    Article  PubMed  PubMed Central  Google Scholar 

  32. N’Gouemo P (2014) BK Ca channel dysfunction in neurological diseases. Front Physiol 5: 373. https://doi.org/10.3389/fphys.2014.00373

    Article  PubMed  PubMed Central  Google Scholar 

  33. N’Gouemo P, Yasuda RP, Faingold CL (2009) Protein expression of small conductance calcium-activated potassium channels is altered in inferior colliculus neurons of the genetically epilepsy-prone rat. Brain Res 1270: 107–111. https://doi.org/10.1016/j.brainres.2009.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khandai P, Forcelli PA, N’Gouemo P (2020) Activation of small conductance calcium-activated potassium channels suppresses seizure susceptibility in the genetically epilepsy-prone rats. Neuropharmacology 163: 107865. https://doi.org/10.1016/j.neuropharm.2019.107865

    Article  CAS  PubMed  Google Scholar 

  35. Su T, Cong WD, Long YS, Luo AH, Sun WW, Deng WY, Liao WP (2008) Altered expression of voltage-gated potassium channel 4.2 and voltage-gated potassium channel 4-interacting protein, and changes in intracellular calcium levels following lithium-pilocarpine-induced status epilepticus. Neuroscience 157: 566–576. https://doi.org/10.1016/j.neuroscience.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  36. Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, Francisco S, Willis M, Ermolinsky B, Zarei M, Knaus H-G, Garrido-Sanabria ER (2008) Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 1200: 116–131. https://doi.org/10.1016/j.brainres.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  37. Shruti S, Clem RL, Barth AL (2008) A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiol Dis 30: 323–330. https://doi.org/10.1016/j.nbd.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leo A, Citraro R, Constanti A, De Sarro G, Russo E (2015) Are big potassium-type Ca 2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 19: 911–926. https://doi.org/10.1517/14728222.2015.1026258

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira MS, Skinner F, Arshadmansab MF, Garcia I, Mello CF, Knaus H-G, Ermolinsky BS, Otalora LFP, Garrido-Sanabria ER (2010) Altered expression and function of small-conductance (SK) Ca2+-activated K+ channels in pilocarpine-treated epileptic rats. Brain Res 1348: 187–199. https://doi.org/10.1016/j.brainres.2010.05.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiwari MN, Mohan S, Biala Y, Yaari Y (2019) Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. J Neurosci 39: 9914–9926. https://doi.org/10.1523/JNEUROSCI.1603-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chavas J, Marty A (2003) Coexistence of Excitatory and Inhibitory GABA Synapses in the Cerebellar Interneuron Network. J Neurosci 23: 2019–2031. https://doi.org/10.1523/JNEUROSCI.23-06-02019.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Malyshev AY, Roshchin MV, Smirnova GR, Dolgikh DA, Balaban PM, Ostrovsky MA (2017) Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light. Neurosci Lett 640: 76–80. https://doi.org/10.1016/j.neulet.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  43. Messier JE, Chen H, Cai Z-L, Xue M (2018) Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon. Elife 7:e38506. https://doi.org/10.7554/eLife.38506

    Article  PubMed  PubMed Central  Google Scholar 

  44. Magloire V, Cornford J, Lieb A, Kullmann DM, Pavlov I (2019) KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun 10: 1225. https://doi.org/10.1038/s41467-019-08933-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agostinho AS, Mietzsch M, Zangrandi L, Kmiec I, Mutti A, Kraus L, Fidzinski P, Schneider UC, Holtkamp M, Heilbronn R, Schwarzer C (2019) Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol Med 11: e9963. https://doi.org/10.15252/emmm.201809963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The writing of the review was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2020-801.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (E.S.N., A.V.Z.); rough draft preparation (E.S.N., A.V.Z.); editing and preparing the final version (E.S.N., P.M.B., A.V.Z.).

Corresponding author

Correspondence to E. S. Nikitin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 7, pp. 795–806https://doi.org/10.31857/S0869813922070068.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, E.S., Balaban, P.M. & Zaitsev, A.V. Prospects for Gene Therapy of Epilepsy Using Calcium-Acivated Potassium Channel Vectors. J Evol Biochem Phys 58, 1065–1074 (2022). https://doi.org/10.1134/S0022093022040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022040111

Keywords:

Navigation