Skip to main content
Log in

A New Diagnostic Index Based on the Activity of Butyrylcholinesterase Isoforms for Laboratory Confirmation of Mild Cognitive Impairment Diagnosis

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In current clinical practice the diagnosis of amnestic-mild cognitive impairment (a-MCI) is made on the basis of a patient’s Mini-Mental State Examination (MMSE) and the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), which have a high degree of subjectivity and do not give a complete picture of the patient’s health status. We have evaluated the effectiveness of a diagnostic index based on the activity of blood plasma butyrylcholinesterase (BChE) to confirm or refute the a-MCI diagnosis. The study involved 69 people: 36 patients diagnosed with a-MCI and 33 healthy volunteers. The a-MCI was diagnosed when the scores were less than 28 points on the MMSE and more than 2 points on the ADAS-Cog scales. Collection of blood and plasma separation from patients of both groups has been performed in a hospital setting. The activity of BChE forms was analysed by Ellman’s method combined with inhibitor analysis. The data on the activity of the atypical and minor forms of BChE were used to calculate an index correlating with the a-MCI diagnosis. Diagnostic intervals characteristic of patients with a-MCI and healthy volunteers have been determined. Comparison of the distribution of indicators of the calculated index by diagnosis categories was carried out using the χ-square test with Yates’ correction of the SPSS 22 (Statistical Package for the Social Sciences) software. The results of the study showed that diagnostics based on the ratio index of the activities of atypical and minor isoforms of BChE is not inferior to the standard diagnostic scales in terms of the sensitivity and specificity, and at the same time is a promising, minimally invasive, fast and cost-effective method for laboratory confirmation of the a-MCI diagnosis. The calculated diagnostic index proposed in this article is based on laboratory studies of the activity of atypical and minor isoforms of BChE in the blood plasma of patients with a preliminary diagnosis of a-MCI, which for the first time makes it possible to confirm the diagnosis by a laboratory method, avoiding subjectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Folstein M, Folstein S, McHugh P (1975) Mini-Mental State. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 2:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  Google Scholar 

  2. Reisberg B, Ferris SH, de Leon MJ, Crook T (1982) The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 139(9):1136–1139. https://doi.org/10.1176/ajp.139.9.1136

    Article  CAS  PubMed  Google Scholar 

  3. Cloutier S, Chertkow H, Kergoat MJ, Gauthier S, Belleville S (2015) Patterns of Cognitive Decline Prior to Dementia in Persons with Mild Cognitive Impairment. J Alzheimer’s Dis 47(4):901–913. https://doi.org/10.3233/JAD-142910

    Article  Google Scholar 

  4. Johansson P, Almqvist EG, Johansson JO, Mattsson N, Andreasson U, Hansson O, Wallin A, Blennow K, Zetterberg H, Svensson J (2013) Cerebrospinal Fluid (CSF) 25-Hydroxyvitamin D Concentration and CSF Acetylcholinesterase Activity Are Reduced in Patients with Alzheimer’s Disease. PloS one 8(11):e81989. https://doi.org/10.1371/journal.pone.0081989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karami A, Darreh-Shori T, Schultzberg M, Eriksdotter M (2021) CSF and Plasma Cholinergic Markers in Patients With Cognitive Impairment. Front Aging Neurosci 13:704583. https://doi.org/10.3389/fnagi.2021.704583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rinne J, Kaasinen V, Järvenpää T, Någren K, Roivainen A, Yu M, Oikonen V, Kurki T (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg & Psych 74:113–115. https://doi.org/10.1136/jnnp.74.1.113

    Article  CAS  Google Scholar 

  7. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563. https://doi.org/10.1016/j.bbr.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  8. Zhuravin IA, Vasilev DS, Dubrovskaya NM, Kozlova DI, Kochkina EG, Plesneva SA, Tumanova NL, Alekseeva OS, Vetosh AN, Nalivaeva NN (2014) Measurement of cognitive dysfunctions using models of prenatal hypoxia. In: Ugryumov MV (ed). Neurodegenerative diseases—from the genome of a rich organism. Scientific World Publishing House, M, pp 419–437. (In Russ).

  9. Josviak ND, Batistela MS, Souza RKM, Wegner NR, Bono GF, Sulzbach CD, Simão-Silva DP, Piovezan MR, Souza RLR, Furtado-Alle L (2017) Plasma butyrylcholinesterase activity: a possible biomarker for differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies? Int J Neurosci 127(12):1082–1086. https://doi.org/10.1080/00207454.2017.1329203

    Article  CAS  PubMed  Google Scholar 

  10. Zhuravin IА, Nalivaeva NN, Kozlova DI, Kochkina EG, Fedorova YB, Gavrilova SI (2015) The activity of blood serum cholinesterases and neprilysin as potential biomarkers of mild-cognitive impairment and alzheimer’s disease. Neurosci Behav Phys 115(12):110–117. (In Russ) https://doi.org/10.17116/jnevro2015115112110-117

    Article  Google Scholar 

  11. Brestkin AP, Kuznetsova LP, Moralev SN, Rosengart EV, Epshtein LM (1997) Cholinesterases of terrestrial animals and hydrobionts. TINRO-Center, Vladivostok. (In Russ)

  12. McGuire M, Nogueira C, Bartels C, Lightstone H, Hajra A, Van der Spek A, Lockridge O, La Du B (1989) Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc Natl Acad Sci USA 86(3): 953–957. https://doi.org/10.1073/pnas.86.3.953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nogueira C, Bartels C, McGuire M, Adkins S, Lubrano T, Rubinstein H, Lightstone H, Van der Spek A, Lockridge O, La Du B (1992) Identification of two different point mutations associated with the fluorideresistant phenotype for human butyrylcholinesterase. Am J Hum Genet 51(4): 821–828.

  14. Liddell J, Lehmann H, Silk E (1962) A ‘silent’ pseudo-cholinesterase gene. Nature 193:561–562. https://doi.org/10.1136/jmg.3.3.190

    Article  CAS  PubMed  Google Scholar 

  15. Jensen F, Bartels C, La Du B (1992) Structural basis of the butyrylcholinesterase H-variant segregating in two Danish families. Pharmacogenetics 2(5):234–240. https://doi.org/10.1097/00008571-199210000-00006

    Article  CAS  PubMed  Google Scholar 

  16. Garry P, Dietz A, Lubrano T, Ford P, James K, Rubinstein H (1976) New allele at cholinesterase locus 1. J Med Genet 13(1):38–42. https://doi.org/10.1136/jmg.13.1.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rubinstein H, Dietz A, Lubrano T (1978) E1k, another quantitative variant at cholinesterase locus 1. J Med Genet 15(1):27–29. https://doi.org/10.1136/jmg.15.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lehmann H, Liddell J (1969) Human cholinesterase (pseudocholinesterase): genetic variants and their recognition. Br J Anaesth 41(3):235–244. https://doi.org/10.1093/bja/41.3.235

    Article  CAS  PubMed  Google Scholar 

  19. Podoly E, Shalev D, Shenhar-Tsarfaty S, Bennett E, Ben Assayag E, Wilgus H, Livnah O, Soreq H (2009) The Butyrylcholinesterase K Variant Confers Structurally Derived Risks for Alzheimer Pathology. J Biol Chem 284(25):17170–17179. https://doi.org/10.1074/jbc.M109.004952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Z, Jiang Y, Wang X, Du Y, Xiao D, Deng Y, Wang J (2015) Butyrylcholinesterase K variant and Alzheimer’s disease risk: a meta-analysis. Med Sci Monit 16; 21:1408–1413. https://doi.org/10.12659/MSM.892982

    Article  CAS  Google Scholar 

  21. Mohs RC (1996) The Alzheimers Disease Assessment Scale (ADAS). Int Psychogeriatrics 8(2): 195–203. https://doi.org/10.1017/s1041610296002578

    Article  CAS  Google Scholar 

  22. Ellman GL, Courtney KD, Andres VJ, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–90.

  23. Vasilev DS, Kozlova DI, Popov AV (2019) Method for differential diagnosis of early or severe stages of rheumatoid arthritis with osteoarthritis. Patent No. 1071064, Russian Federation, IPC G01N 33/96 (2006.01) G01N 33/564 (2006.01). Appl. 2018.04.03; Published 2019.10.31; Bull. No. 10. (In Russ).

  24. Bradford MM (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  25. Darvesh S, Hopkins DA (2003) Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol 463 (1):25–43. https://doi.org/10.1002/cne.10751

    Article  CAS  PubMed  Google Scholar 

  26. Greenfield SA (1991) A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol Neurobiol 11(1):55–77. https://doi.org/10.1007/BF00712800

    Article  CAS  PubMed  Google Scholar 

  27. Appleyard M, Jahnsen H (1992) Actions of acetylcholinesterase in the guinea-pig cerebellar cortex in vitro. Neuroscience 47(2):291–301. https://doi.org/10.1016/0306-4522(92)90245-w

    Article  CAS  PubMed  Google Scholar 

  28. Arendt T, Bruckner MK, Lange M, Bigl V (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development – a study of molecular forms. Neurochem Int 21(3):381–396. https://doi.org/10.1016/0197-0186(92)90189-x

    Article  CAS  PubMed  Google Scholar 

  29. Mesulam M, Geula C (1994) Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 36: 722–727. https://doi.org/10.1002/ana.410360506

    Article  CAS  PubMed  Google Scholar 

  30. Mueller B, Adler G (2015) Prevalence of wild-type butyrylcholinesterase genotype in patients with Alzheimer’s dementia. World J Neurosci 5: 175–179. https://doi.org/10.4236/wjns.2015.53019

    Article  CAS  Google Scholar 

  31. Mizukami K, Akatsu H, Abrahamson EE, Mi Z, Ikonomovic MD (2016) Immunohistochemical analysis of hippocampal butyrylcholinesterase: implications for regional vulnerability in Alzheimer’s disease. Neuropathology 36:135–145. https://doi.org/10.1111/neup.12241

    Article  CAS  PubMed  Google Scholar 

  32. Macdonald R, Maxwell SP, Reid GA, Cash MK, DeBay DR, Darvesh S (2017) Quantification of butyrylcholinesterase activity as a sensitive and specific biomarker of Alzheimer’s disease. J Alzh Dis 58:491–505. https://doi.org/10.3233/JAD-170164

    Article  CAS  Google Scholar 

  33. Gabriel AJ, Almeida MR, Ribeiro MH, Carneiro D, Valério D, Pinheiro AC, Pascoal R, Santana I, Baldeiras I (2018) Influence of butyrylcholinesterase in progression of mild cognitive impairment to Alzheimer’s disease. J Alzh Dis 61(3):1097–1105. https://doi.org/10.3233/JAD-170695

    Article  CAS  Google Scholar 

Download references

Funding

The laboratory study was partially carried out within the state assignment 075-00408-21-00. The authors are solely responsible for providing the final version of the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Kozlova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare the absence of clear and potential conflicts of interest related to the publication of the presented article.

Additional information

Translated by K. Pakhomov

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 6, pp. 725–735https://doi.org/10.31857/S086981392206005X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, D.I., Khizha, V.V., Anosova, L.V. et al. A New Diagnostic Index Based on the Activity of Butyrylcholinesterase Isoforms for Laboratory Confirmation of Mild Cognitive Impairment Diagnosis. J Evol Biochem Phys 58, 885–893 (2022). https://doi.org/10.1134/S002209302203022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302203022X

Keywords:

Navigation