Skip to main content
Log in

The Role of the AgRP 25-51 Active Fragment in the Regulation of Functional Activity of Locus Coeruleus Norepinephrinergic Neurons and in Norepinephrine Biosynthesis

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Double fluorescence immunolabeling and confocal microscopy showed that the nerve processes immediately surrounding norepinephrinergic (NE) neurons in the brainstem locus coeruleus (LC) are immunopositive to AgRP (agouti gene-related protein), and that NE neurons express melanocortin receptor type 3, but not 4, on their bodies. These findings suggest that the active AgRP 83–132 fragment is able to directly affect NE neurons. In C57BL/6J mice, 3 h after the injection of the AgRP 25–51 fragment (whose action is not mediated by G protein-coupled melanocortin receptors) into the LC, it exhibited an inhibitory effect on NE neurons. The immunolabeling of LC neurons revealed no changes in the level of tyrosine hydroxylase phosphorylated at serine-40, but a significant decrease in levels of tyrosine hydroxylase phosphorylated at serine-31 and dopamine-β-hydroxylase. Real-time PCR showed that after AgRP 25–51 injection, there was a significant decrease in levels of tyrosine hydroxylase mRNA, norepinephrine transporter mRNA, and mRNA of GABA biosynthesis enzymes GAD65/67. HPLC demonstrated that after AgRP 25–51 injection into the LC, the NE level in the striatum and orbitofrontal cortex, i.e. main targets of LC NE neurons, also decreased. The article discusses the mechanisms of interaction of the melanocortin system with LC NE neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ramos BP, Arnsten AF (2007) Adrenergic Pharmacology and Cognition: Focus on the Prefrontal Cortex. Pharmacol Ther 113(3):523-36. https://doi.org/10.1016/j.pharmthera.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  2. Reader TA (1978) The effects of dopamine, noradrenaline and serotonin in the visual cortex of the cat. Cellular and Molecular Life Sciences 34(12): 1586-1588. https://doi.org/10.1007/BF02034690

    Article  CAS  Google Scholar 

  3. Seung-Hee L, Yang D (2012) Neuromodulation of Brain States. Neuron 76(1): 209-222. https://doi.org/10.1016/j.neuron.2012.09.012

    Article  CAS  Google Scholar 

  4. Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochemi Biophys. 508(1): 1–12. https://doi.org/10.1016/j.abb.2010.12.017

    Article  CAS  Google Scholar 

  5. Moore RY, Card JP (1984) Noradrenaline-containing neuron systems. In: Björklund A, Hökfelt T (Eds) Classical Transmitters in the CNS, Handbook of Chemical Neuroanatomy, vol 2 part I. Elsevier, Amsterdam New York Oxford, pp 123–156.

    Google Scholar 

  6. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278: 135-138. https://doi.org/10.1126/science.278.5335.135

    Article  CAS  PubMed  Google Scholar 

  7. Bagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I, Akil H, Barsh GS, Watson SJ (1999) Anatomy of an Endogenous Antagonist: Relationship between Agouti-Related Protein and Proopiomelanocortin in Brain. J Neurosci 19: 1-7. https://doi.org/10.1523/JNEUROSCI.19-18-j0004.1999

    Article  Google Scholar 

  8. Wang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F, Luo M, Zhan C (2015) Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat. 9: Article 40. https://doi.org/10.3389/fnana.2015.00040. eCollection 2015.

  9. Creemers JW, Pritchard LE, Gyte A, Le Rouzic P, Meulemans S, Wardlaw SL, Zhu X, Steiner DF, Davies N, Armstrong D, Luckman SM, Schmitz CA, Rick AD, Brennand JC, White A, Lawrence CB (2006) Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP) 83–132: interaction between AGRP83–132 and melanocortin receptors cannot be influenced by syndecan-3. Endocrinology 147(4): 1621-1631. https://doi.org/10.1210/en.2005-1373

    Article  CAS  PubMed  Google Scholar 

  10. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8 (5): 571-578. https://doi.org/10.1038/nn1455

    Article  CAS  Google Scholar 

  11. Lee M, Wardlaw SL (2007) The central melanocortin system and the regulation of energy balance. Front Biosci 12: 3994-4010. https://doi.org/10.2741/2366

    Article  CAS  PubMed  Google Scholar 

  12. Tolle V, Low MJ (2008) In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes. 57 (1): 86-94. https://doi.org/10.2337/db07-0733

    Article  CAS  PubMed  Google Scholar 

  13. Goto K, Inui A, Takimoto Y, Yuzuriha H, Asakawa A, Kawamura Y, Tsuji H, Takahara Y, Takeyama C, Katsuura G, Kasuga M (2003) Acute intracerebroventricular administration of carboxyl-terminal fragments of agouti-related peptide produces a long-term decrease in energy expenditure in rats. Internetional journal of molecular medicine. 12: 379-383. https://doi.org/10.3892/ijmm.12.3.379

    Article  CAS  Google Scholar 

  14. Mikhrina AL, Romanova IV (2015) A role of AGRP in regulating dopaminergic neurons in the brain. Neurosci Behav Physiol 45 (5): 536–541. https://doi.org/10.1007/s11055-015-0107-7

    Article  CAS  Google Scholar 

  15. Mikhrina AL, Saveleva LO, Alekseeva OS, and Romanova IV (2020) Effects of Active Fragments AgRP 83-132 and 25-51 on Dopamine Biosynthesis in the Brain. Neurosci and Behav. Physiol, 50 (3): 367-373. https://doi.org/10.1007/s11055-020-00908-z

    Article  CAS  Google Scholar 

  16. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Acad. Press. Int. Standard Book Number: 0-12-547636-1. – CD-ROM.- http://www.academicpress.com

    Google Scholar 

  17. Krasnova IN, Bychkov ER, Lioudyno VI, Zubareva OE, Dambinova SA (2000) Intracerebroventricular administration of substance P increases dopamine content in the brain of 6-hydrodopamine lesioned rats. Neuroscience 95(1): 113-117. https://doi.org/10.1016/s0306-4522(99)00400-5

    Article  CAS  PubMed  Google Scholar 

  18. Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO (2018) The Leptin, Dopamine and Serotonin Receptors in Hypothalamic POMC-Neurons of Normal and Obese Rodents. Neurochem Res. 43(4): 821-837. https://doi.org/10.1007/s11064-018-2485-z

    Article  CAS  PubMed  Google Scholar 

  19. Pritchard LE, White A (2005) Agouti-related protein: more than a melanocortin-4 receptor antagonist? Peptides 26 (10): 1759-1770. https://doi.org/10.1016/j.peptides.2004.11.036

    Article  CAS  PubMed  Google Scholar 

  20. Aston-Jones G (2004) Locus Coeruleus, A5 and A7 Noradrenergic Cell Groups. In: The rat nervous system, Third Edition. Elsevier, USA, pp 259-294.

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the State budget (theme reg. no. АААА-А18-118012290427-7).

Author information

Authors and Affiliations

Authors

Contributions

The basic idea and experimental design (A.L.M., I.V.R.); conducting experiments and data collection (A.L.M., L.O.S.); data processing (A.L.M., L.O.S., I.Yu.M.); writing and editing the manuscript (A.L.M., I.V.R.).

Corresponding author

Correspondence to I. V. Romanova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed.

This study did not involve human subjects as research objects.

СONFLICT OF INTEREST

The authors declare that they have no conflict of interest that might be associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, No. 12, pp. 1542–1552https://doi.org/10.31857/S0869813921120074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhrina, A.L., Saveleva, L.O., Morina, I.Y. et al. The Role of the AgRP 25-51 Active Fragment in the Regulation of Functional Activity of Locus Coeruleus Norepinephrinergic Neurons and in Norepinephrine Biosynthesis. J Evol Biochem Phys 57, 1490–1498 (2021). https://doi.org/10.1134/S0022093021060259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021060259

Keywords:

Navigation