Skip to main content
Log in

Kisspeptin-10 Administration Regulates mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Peripheral activities of kisspeptin (Kp) have been investigated in several studies and it was shown that Kp-10 activates ERK1/2, however, its regulation of AKT and mTOR activity is controversial. Therefore, this study aimed to investigate the effect of Kp-10 on cardiac ERK1/2 and AKT activities, as well as oxidative and antioxidative parameters in healthy mice. Twelve young C57/BL6 mice were divided into two groups with six animals in each group as follows: (1) Control that received only physiological saline and (2) Kp-10 that received 20 nM Kp-10 in physiological saline intraperitoneally. After a 3-h period, animals were sacrificed, and cardiac tissues were collected for the western blot and oxidative and antioxidative enzyme activities. AKT phosphorylation was significantly increased by Kp-10. In addition, Kp-10 significantly decreased mTOR activity. Superoxide dismutase, catalase, glutathione and malondialdehyde levels, as well as total oxidant status and oxidative stress index, were similar in both groups. Total antioxidant status was significantly higher in Kp-10 group. AKT is an upstream factor of the mTOR/S6 pathway, therefore, our results suggest that Kp-10 acts differentially on AKT and mTOR/S6 activities. Moreover, increased TAS suggests an antioxidant activity of Kp-10 in healthy heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Clarke, H., Dhillo, W.S., and Jayasena, C.N., Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders, Endocrinol. Metab. (Seoul), 2015, vol. 30, pp. 124–141.

  2. Hu, K.-L., Chang, H.-M., Zhao, H.-C., Yu, Y., Li, R., and Qiao, J., Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation, Hum. Reprod. Update, 2019, vol. 25, pp. 326–343.

  3. Lee, J.H., Miele, M.E., Hicks, D.J., Phillips, K.K., Trent, J.M., Weissman, B.E., and Welch, D.R., KiSS-1, a novel human malignant melanoma metastasis-suppressor gene, J. Natl. Cancer Inst., 1996, vol. 88, pp. 1731–1737.

  4. Bhattacharya, M. and Babwah, A.V., Kisspeptin: Beyond the Brain, Endocrinology, 2015, vol. 156, pp. 1218–1227.

  5. Li, X.F., Kinsey-Jones, J.S., Cheng, Y., Knox, A.M., Lin, Y., Petrou, N.A., Roseweir, A., Lightman, S.L., Milligan, S.R., Millar, R.P., and O’Byrne, K.T., Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat, PLoS One, 2009, vol. 4, p. e8334.

  6. Kaiser, U.B., and Kuohung, W., KiSS-1 and GPR54 as new players in gonadotropin regulation and puberty, Endocrine, 2005, vol. 26, pp. 277–284.

  7. Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S., Jr., Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., Zahn, D., Dixon, J., Kaiser, U.B., Slaugenhaupt, S.A., Gusella, J.F., O’Rahilly, S., Carlton, M.B.L., Crowley, W.F., Jr., Aparicio, S.A.J.R., and Colledge, W.H., The GPR54 gene as a regulator of puberty, N. Engl. J. Med., 2003, vol. 349, pp. 1614–1627.

  8. Wolfe, A., and Hussain, M.A., The Emerging Role(s) for Kisspeptin in Metabolism in Mammals, Front. Endocrinol. (Lausanne), 2018, vol. 9, p. 184.

  9. Akkaya, H., Kilic, E., Eyuboglu Dinc, S., and Yilmaz, B., Postacute Effects of Kisspeptin-10 on Neuronal Injury Induced by L-Methionine in Rats, J. Biochem. Mol. Toxicol., 2014, vol. 28, pp. 373–377.

  10. Aslan, M., Erkanli Senturk, G., Akkaya, H., Sahin, S., and Yılmaz, B., The effect of oxytocin and Kisspeptin-10 in ovary and uterus of ischemia-reperfusion injured rats, Taiwan J. Obstet. Gynecol., 2017, vol. 56, pp. 456–462.

  11. Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J.M., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S.N., Vassart, G., and Parmentier, M., The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54, J. Biol. Chem., 2001, vol. 276, pp. 34631–34636.

  12. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., and Fujino, M., Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor, Nature, 2001, vol. 411, pp. 613–617.

  13. Mead, E.J., Maguire, J.J., Kuc, R.E., and Davenport, A.P., Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels, Endocrinology, 2007, vol. 148, pp. 140–147.

  14. Shojaei, M., Erfanian, S., Jahromi, A.S., Yusefi, N., Madani, A., Khoshfetrat, M., and Hojjat-Farsangi, M., Kisspeptin serum levels in acute myocardial infarction patients and healthy individuals, Biomed. Res. Ther., 2018, vol. 5, pp. 2111–2118.

  15. Maguire, J.J., Kirby, H.R., Mead, E.J., Kuc, R.E., d’Anglemont de Tassigny, X., Colledge, W.H., and Davenport, A.P., Inotropic action of the puberty hormone kisspeptin in rat, mouse and human: cardiovascular distribution and characteristics of the kisspeptin receptor, PLoS One, 2011, vol. 6, pp. e27601.

  16. Zhang, Y., Hou, Y., Wang, X., Ping, J., Ma, Z., Suo, C., Lei, Z., Li, X., Zhang, Z., Jia, C., and Su, J., The effects of kisspeptin-10 on serum metabolism and myocardium in rats, PLoS One, 2017, vol. 12, pp. e0179164.

  17. Yu, J.S.L. and Cui, W., Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination, Development, 2016, vol. 143, pp. 3050.

  18. Kumar, C.C., and Madison, V., AKT crystal structure and AKT-specific inhibitors, Oncogene, 2005, vol. 24, pp. 7493–7501.

  19. Yu, H., Littlewood, T., and Bennett, M., Akt isoforms in vascular disease, Vascul. Pharmacol., 2015, vol. 71, pp. 57–64.

  20. Liu, G.Y., and Sabatini, D.M., mTOR at the nexus of nutrition, growth, ageing and disease, Nat. Rev. Mol. Cell. Biol., 2020, vol. 21, pp. 183–203.

  21. Eblen, S.T., Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes, Adv. Cancer Res., 2018, vol. 138, pp. 99–142.

  22. Nitulescu, G.M., Van De Venter, M., Nitulescu, G., Ungurianu, A., Juzenas, P., Peng, Q., Olaru, O.T., Grădinaru, D., Tsatsakis, A., Tsoukalas, D., Spandidos, D.A., and Margina, D., The Akt pathway in oncology therapy and beyond (Review), Int. J. Oncol., 2018, vol. 53, pp. 2319–2331.

  23. Sciarretta, S., Forte, M., Frati, G., and Sadoshima, J., New Insights Into the Role of mTOR Signaling in the Cardiovascular System, Circ. Res., 2018, vol. 122, pp. 489–505.

  24. Gallo, S., Vitacolonna, A., Bonzano, A., Comoglio, P., and Crepaldi, T., ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy, Int. J. Mol. Sci., 2019, vol. 20, pp. 2164.

  25. Wende, A.R., O’Neill, B.T., Bugger, H., Riehle, C., Tuinei, J., Buchanan, J., Tsushima, K., Wang, L., Caro, P., Guo, A., Sloan, C., Kim, B.J., Wang, X., Pereira, R.O., McCrory, M.A., Nye, B.G., Benavides, G.A., Darley-Usmar, V.M., Shioi, T., Weimer, B.C., and Abel, E.D., Enhanced cardiac Akt/protein kinase B signaling contributes to pathological cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes, Mol. Cell. Biol., 2015, vol. 35, pp. 831–846.

  26. Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B.A., Hall, M.N., Rüegg, M.A., and Brink, M., Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy, Cardiovasc. Res., 2016, vol. 109, pp. 103–114.

  27. Shende, P., Plaisance, I., Morandi, C., Pellieux, C., Berthonneche, C., Zorzato, F., Krishnan, J., Lerch, R., Hall, M.N., Rüegg, M.A., Pedrazzini, T., and Brink, M., Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice, Circulation, 2011, vol. 123, pp. 1073–1082.

  28. Wu, X., Cao, Y., Nie, J., Liu, H., Lu, S., Hu, X., Zhu, J., Zhao, X., Chen, J., Chen, X., Yang, Z., and Li, X., Genetic and pharmacological inhibition of Rheb1-mTORC1 signaling exerts cardioprotection against adverse cardiac remodeling in mice, Am. J. Pathol., 2013, vol. 182, pp. 2005–2014.

  29. Flynn, J.M., O'Leary, M.N., Zambataro, C.A., Academia, E.C., Presley, M.P., Garrett, B.J., Zykovich, A., Mooney, S.D., Strong, R., Rosen, C.J., Kapahi, P., Nelson, M.D., Kennedy, B.K., and Melov, S., Late-life rapamycin treatment reverses age-related heart dysfunction, Aging Cell, 2013, vol. 12, pp. 851–862.

  30. Mutlak, M., Schlesinger-Laufer, M., Haas, T., Shofti, R., Ballan, N., Lewis, Y.E., Zuler, M., Zohar, Y., Caspi, L.H., and Kehat, I., Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy, Int. J. Cardiol., 2018, vol. 270, pp. 204–213.

  31. Münzel, T., Camici, G.G., Maack, C., Bonetti, N.R., Fuster, V., and Kovacic, J.C., Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series, J. Am. Coll. Cardiol., 2017, vol. 70, pp. 212–229.

  32. Hu, K.L., Zhao, H., Chang, H.M., Yu, Y., and Qiao, J., Kisspeptin/Kisspeptin Receptor System in the Ovary, Front. Endocrinol. (Lausanne), 2017, vol. 8, pp. 365.

  33. Roa, J., and Tena-Sempere, M., Energy balance and puberty onset: emerging role of central mTOR signaling, Trends Endocrinol. Metab., 2010, vol. 21, pp. 519–528.

  34. Liu, F., Huang, X., Luo, Z., He, J., Haider, F., Song, C., Peng, L., Chen, T., and Wu, B., Hypoxia-Activated PI3K/Akt Inhibits Oxidative Stress via the Regulation of Reactive Oxygen Species in Human Dental Pulp Cells, Oxid. Med. Cell. Longev., 2019, vol. 2019, p. 6595189.

  35. Song, Y.H., Cai, H., Zhao, Z.M., Chang, W.J., Gu, N., Cao, S.P., and Wu, M.L., Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation, Biomed. Pharmacother., 2016, vol. 83, pp. 1089–1094.

  36. Oka, S.I., Hirata, T., Suzuki, W., Naito, D., Chen, Y., Chin, A., Yaginuma, H., Saito, T., Nagarajan, N., Zhai, P., Bhat, S., Schesing, K., Shao, D., Hirabayashi, Y., Yodoi, J., Sciarretta, S., and Sadoshima, J., Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes, J. Biol. Chem., 2017, vol. 292, pp. 18988–19000.

  37. Akkaya, H., Eyuboglu, S., Erkanlı Senturk, G., and Yilmaz, B., Investigation of the effects of kisspeptin-10 in methionine-induced lipid peroxidation in testicle tissue of young rats, J. Biochem. Mol. Toxicol., 2017, vol. 31, p. 10.1002/jbt.21881.

  38. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

  39. Ethemoglu, M.S., Seker, F.B., Akkaya, H., Kilic, E., Aslan, I., Erdogan, C.S., and Yilmaz, B., Anticonvulsant activity of resveratrol-loaded liposomes in vivo, Neuroscience, 2017, vol. 357, pp. 12–19.

  40. Motulsky, H.J. and Brown, R.E., Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate, BMC Bioinformatics, 2006, vol. 7, pp. 123.

  41. Aydin, M., Oktar, S., Yonden, Z., Ozturk, O.H., and Yilmaz, B., Direct and indirect effects of kisspeptin on liver oxidant and antioxidant systems in young male rats, Cell Biochem. Funct., 2010, vol. 28, pp. 293–299.

  42. Vara, D. and Pula, G., Reactive oxygen species: physiological roles in the regulation of vascular cells, Curr. Mol. Med., 2014, vol. 14, pp. 1103–1125.

  43. Verhaar, M.C., Westerweel, P.E., van Zonneveld, A.J., and Rabelink, T.J., Free radical production by dysfunctional eNOS, Heart, 2004, vol. 90, pp. 494–495.

  44. Wang, X.-X., Wang, X.-L., Tong, M.-m., Gan, L., Chen, H., Wu, S.-s., Chen, J.-X., Li, R.-L., Wu, Y., Zhang, H.-y., Zhu, Y., Li, Y.-x., He, J.-h., Wang, M., and Jiang, W., SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms, Basic Res. Cardiol., 2016, vol. 111, pp. 13–13.

  45. Fetterman, J.L., Holbrook, M., Westbrook, D.G., Brown, J.A., Feeley, K.P., Breton-Romero, R., Linder, E.A., Berk, B.D., Weisbrod, R.M., Widlansky, M.E., Gokce, N., Ballinger, S.W., and Hamburg, N.M., Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease, Cardiovasc. Diabetol., 2016, vol. 15, pp. 53.

  46. Collet, J.F. and Messens, J., Structure, function, and mechanism of thioredoxin proteins, Antioxid. Redox Signal., 2010, vol. 13, pp. 1205–1216.

  47. Mahmood, D.F., Abderrazak, A., El Hadri, K., Simmet, T., and Rouis, M., The thioredoxin system as a therapeutic target in human health and disease, Antioxid. Redox Signal., 2013, vol. 19, pp. 1266–1303.

  48. Goldberg, S.F., Miele, M.E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L.P., and Welch, D.R., Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP, Cancer Res., 2003, vol. 63, pp. 432–440.

  49. Zhu, Y., Pires, K.M., Whitehead, K.J., Olsen, C.D., Wayment, B., Zhang, Y.C., Bugger, H., Ilkun, O., Litwin, S.E., Thomas, G., Kozma, S.C., and Abel, E.D., Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth, PLoS One, 2013, vol. 8, pp. e54221.

  50. Zhang, D., Contu, R., Latronico, M.V., Zhang, J., Rizzi, R., Catalucci, D., Miyamoto, S., Huang, K., Ceci, M., Gu, Y., Dalton, N.D., Peterson, K.L., Guan, K.L., Brown, J.H., Chen, J., Sonenberg, N., and Condorelli, G., MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice, J. Clin. Invest., 2010, vol. 120, pp. 2805–2816.

  51. McMullen, J.R., Sherwood, M.C., Tarnavski, O., Zhang, L., Dorfman, A.L., Shioi, T., and Izumo, S., Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload, Circulation, 2004, vol. 109, pp. 3050–3055.

  52. Papapetropoulos, A., Fulton, D., Mahboubi, K., Kalb, R.G., O’Connor, D.S., Li, F., Altieri, D.C., and Sessa, W.C., Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway, J. Biol. Chem., 2000, vol. 275, pp. 9102–9105.

  53. Luo, Z., Fujio, Y., Kureishi, Y., Rudic, R.D., Daumerie, G., Fulton, D., Sessa, W.C., and Walsh, K., Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo, J. Clin. Invest., 2000, vol. 106, pp. 493–499.

  54. Abeyrathna, P. and Su, Y., The critical role of Akt in cardiovascular function, Vascul. Pharmacol., 2015, vol. 74, pp. 38–48.

  55. Gu, J., Hu, W., Song, Z.P., Chen, Y.G., Zhang, D.D., and Wang, C.Q., Rapamycin Inhibits Cardiac Hypertrophy by Promoting Autophagy via the MEK/ERK/Beclin-1 Pathway, Front Physiol., 2016, vol. 7, pp. 104.

  56. Laplante, M. and Sabatini, D.M., mTOR signaling in growth control and disease, Cell, 2012, vol. 149, pp. 274–293.

  57. Beymer, M., Negron, A.L., Yu, G., Wu, S., Mayer, C., Lin, R.Z., Boehm, U., and Acosta-Martinez, M., Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility, Am. J. Physiol. Endocrinol. Metab., 2014, vol. 307, pp. E969–982.

  58. Allocati, N., Masulli, M., Di Ilio, C., and Federici, L., Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases, Oncogenesis, 2018, vol. 7, p. 8.

  59. Pahwa, S., Sharma, R., and Singh, B., Role of Glutathione S-Transferase in Coronary Artery Disease Patients with and Without Type 2 Diabetes Mellitus, J. Clin. Diagn. Res., 2017, vol. 11, pp. BC05–BC08.

  60. Aydin, M., Selcoki, Y., Nazli, Y., Colak, N., Yalcin, K.S., and Canbal, M., Relationship between total antioxidant capacity and the severity of coronary artery, J. Clin. Exp. Invest., 2012, vol. 3, pp. 22–28.

  61. Asoglu, R., Sezen, H., Erkus, M.E., Altiparmak, H., Kaya, Z., Asoglu, E., Gunebakmaz, O., Demirbag, R., and Sezen, Y., Evaluation of oxidant status in both systolic and diastolic heart failure, Medical Science and Discovery, 2018, vol. 5, pp. 350–356.

  62. Patel, S., Van Der Kaay, J., and Sutherland, C., Insulin regulation of hepatic insulin-like growth factor-binding protein-1 (IGFBP-1) gene expression and mammalian target of rapamycin (mTOR) signalling is impaired by the presence of hydrogen peroxide, Biochem. J., 2002, vol. 365, pp. 537–545.

  63. Zhao, D., Yang, J., and Yang, L., Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes, Oxid. Med. Cell Longev., 2017, vol. 2017, p. 6437467.

Download references

Funding

This study did not receive any grants from third-party organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Akkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, H. Kisspeptin-10 Administration Regulates mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue. J Evol Biochem Phys 57, 270–280 (2021). https://doi.org/10.1134/S0022093021020095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021020095

Keywords:

Navigation