Skip to main content
Log in

Does Atrial Electrical Stimulation Influence the Sequence of Ventricular Depolarization in the Heart of a Rainbow Trout Oncorhynchus mykiss?

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Depolarization of the heart ventricles at an increasing heart rate was investigated in a rainbow trout Oncorhynchus mykiss (n = 14). It was shown that at an imposed supraventricular rhythm ranging from 30 to 60 bpm the depolarization wave initially propagates from the loci of earliest atrial excitation located near the atrioventricular orifice to the subendocardial trabecular layer of the noncompact myocardium and then travels towards the epicardium as well as along the wall. This indicates some preferential pathways of cardiac excitation conduction from the pacemaker zone to subendocardial myocytes. Regardless of the heart rate, the basic pattern of ventricular excitation in the rainbow trout heart consists in the propagation of the depolarization wave, which captures the entire thickness of the myocardial wall and activates the subendocardium faster than the subepicardium, from the dorsal regions of the cardiac base in basoapical and ventral directions. At a rhythm of 50–60 bpm, propagation of the depolarization wave in the basal ventricular areas is inverted from the dorsoventral to ventrodorsal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farrell, A.P., Eliason, E., Sandblom, E., and Clark, T.D., Fish cardiorespiratory physiology in an era of climate change, Can. J. Zool., 2009, vol. 87(10), pp. 835–851.

    Article  CAS  Google Scholar 

  2. Kibler, N.A., Nuzhny, V.P., Achmetzhynova, S.V., and Shmakov, D.N., Effects of heart rate on the pump function and electrophysiological characteristics of the heart in the frog Rana temporaria, Int. J. Biomed., 2017, vol. 7(1), pp. 46–50.

    Article  Google Scholar 

  3. Bigdai, E.V. and Samoilov, V.O., Heterogeneity of olfactory transduction mechanisms in the frog Rana temporaria, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40(2), pp. 112–117.

    CAS  PubMed  Google Scholar 

  4. Klaiman, J.M., Fenna, A.J., Shiels, H.A., Macri, J., and Gillis, T.E., Cardiac remodeling in fish: strategies to maintain heart function during temperature change, PLoS Onse, 2011, vol. 6, p. 24464.

    Article  Google Scholar 

  5. Moorman, A.F.M. and Christoffels, V.M., Cardiac chamber formation: development, genes and evolution, Physiol. Rev., 2003, vol. 83, pp. 1223–1267.

    Article  CAS  Google Scholar 

  6. Jensen, J., Wang, T., Christoffels, V.M., and Moorman, A.F.M., Evolution and development of the building plan of the vertebrate heart, Biochim. Biophys. Acta, 2013, vol. 1833, pp. 783–794.

    Article  CAS  Google Scholar 

  7. Sedmera, D., Reckova, M., DeAlmeida, A., Sedmerova, M., Biermann, M., Volejnik, J., Sarre, A., Raddatz, E., McCarthy, R.A., Gour-die, R.G., and Thompson, R.P., Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, pp. 1152–1160.

    Article  Google Scholar 

  8. Casselman, M.T., Anttila, K., and Farrell, A.R., Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp., J. Fish Biol., 2012, vol. 80, pp. 358–377.

    Article  CAS  Google Scholar 

  9. Gradill, K.J., Shawn, R., Garnerl, S.R., Chris, C., Wilson, C.C., Anthony, P., Farrell, A.P., and Neffl, B.D., Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): a common garden experiment implicates local adaptation, Evol. Ecol., 2016, vol. 30, pp. 877–886.

    Article  Google Scholar 

  10. Shmakov, D.N. and Roshchevsky, M.P., Aktiva-tsiya miokarda (Myocardium Activation), Syktyvkar, 1997.

    Google Scholar 

  11. Vaykshnoraite, M.A., Activation pattern of the ventricular myocardium in the carp (Cyprinus carpio), Ross. Zh. Fiziol., 2018, vol. 104(2), pp. 238–244.

    Google Scholar 

  12. Vaykshnoraite, M.A., Vityazev, V.A., and Azarov, Ya.E., The sequence of activation of ventricular myocardium in Atlantic cod (Gadus morhua marisalbi), Izv. Komi Nauch. Ts., URO RAN, 2018, vol. 32(4), pp. 31–35.

    Google Scholar 

  13. Brown, M.J., Symonowicz, C., Medina, L.V., Bratcher, N.A., Buckmaster, C.A., Klein, H., and Anderson, L.C., Culture of care: organizational responsibilities, Management of Animal Care and Use Programs in Research, Education, and Testing, 2nd Ed., Ch. 2, Weichbrod, R.H., Thompson, G.A.H., and Norton, J.N., Eds., Boca Raton (FL), 2018.

    Google Scholar 

  14. Gubler, E.V. and Genkin, A.A., Primenenie nepa-rametricheskikh kriteriev statistiki v mediko-biolog-icheskikh issledovaniyakh (Application of Non-Parametric Statistical Criteria in Medical and Biological Research), Leningrad, 1973.

    Google Scholar 

  15. Glukhov, A.V., Egorov, Yu.V., and Rozensh-traukh, L.V., Electrophysiological mechanisms of heart rate stability in hibernating mammals during hypothermia, Usp. Fiziol. Nauk, 2014, vol. 45(1), pp. 3–26.

    CAS  PubMed  Google Scholar 

  16. Kopylova, G.N., Samonina, G.E., Mandriko, E.V., and Krupnova, E.P., The mechanisms of the bidirectional parasympathetic regulation of the heart rhythm in teleosts, Fiziol. Zh. SSSR im. I.M. Sechenova, 1990, vol. 76(10), pp. 1470–1473.

    CAS  Google Scholar 

  17. Kopylova, G.N., Krupnova, E.N., and Samonina, G.E., Parasympathetic regulation of the heart in teleosts and factors determining the regulatory direction of the chronotropic effect, Fiziol. Zh. SSSR im. I.M. Sechenova, 1989, vol. 75(7), pp. 936–941.

    CAS  PubMed  Google Scholar 

  18. Abramochkin, D.V. and Vornanen, M., Seasonal acclimatization of the cardiac potassium currents (IK1 and IKr) in an arctic marine teleost, the navaga cod (Eleginus navaga), J. Comp. Physiol. B, 2015, vol. 185, pp. 883–890.

    Article  CAS  Google Scholar 

Download references

Funding

This work was implemented within the theme “A comparative physiological investigation of the spatiotemporal organization of electrophysiological processes and myocardial contractility in vertebrates” (reg. no. АААА-А17-117012310154-6) under the Program of Fundamental Scientific Studies for 2013–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kibler.

Ethics declarations

All applicable international, national and insttutional principles of handling and using experimental animals for scientific purposes were observed. This study did not involve human subjects as research objects.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2020, Vol. 56, No. 1, pp. 42–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibler, N.A., Nuzhny, V.P., Kharin, S.N. et al. Does Atrial Electrical Stimulation Influence the Sequence of Ventricular Depolarization in the Heart of a Rainbow Trout Oncorhynchus mykiss?. J Evol Biochem Phys 56, 41–46 (2020). https://doi.org/10.1134/S0022093020010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020010056

Keywords

Navigation