Evolutionary Origins of Transventricular Transmission of Hypothalamic Hormones and Neuromodulatory Substances

  • M. G. BelekhovaEmail author
  • N. B. Kenigfest
  • E. V. Chernigovskaya
  • N. M. Chmykhova
Morphological Basics for Evolution of Functions


Liquor-contacting cells, immunoreactive to oxytocin, vasopressin, monoamines (dopamine, serotonin) and calbindin, were found in hypothalamic neurosecretory nuclei of turtles (Testudo horsfieldi and Emys orbicularis). They are considered as sources of the nonsynaptic transventricular pathway responsible for the delivery of a broad variety of hormones and neuromodulators to different hypothalamic and extrahypothalamic brain structures. This phylogenetically ancient tract is inherent to all vertebrates, including humans, and contributes to the organization of different forms of social behavior.


transventricular hypothalamic transmission hormones monoamines turtles evolution 





ependymal layer




n. medialis re-cessus infundibuli


n. preopticus periven-tricularis




periependymal layer


n. paraventricularis




subependymal layer


external sEp


internal sEp




tractus hypothalamo-hypophisalis


third ventricle






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are grateful to Prof. V.V. Grinevich (Heidelberg University, Germany) for his helpful consultation and providing antibodies, as well as to Dr. D.V. Amakhin (Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, Laboratory of Molecular Mechanisms of Neuron-Neuron Interactions) for his aid in photographing the preparations.


  1. 1.
    Polenov, A.L., Evolyutsiya gipotalamo-gipofizar-nogo neiroendokrinnogo kompleksa (Evolution of the Hypothalamo-Hypophyseal Neuroendocrine Complex), pt. 2, Leningrad, 1983, pp. 53–109.Google Scholar
  2. 2.
    Polenov, A.L., Obshchaya kharakteristika neiro-sekretornykh kletok. Neiroendokrinologiya (General Characteristics of Neurosecretory Cells. Neuroen-docrinology), book 1, pt. 1, St. Petersburg, 1993, pp. 13–69.Google Scholar
  3. 3.
    Ugryumov, M.V., Mechanisms of Neuroendocrine Regulation, Moscow, 1999.Google Scholar
  4. 4.
    Vigh, B., Manzano E, Silva, M.J., Frank, C.L., Vincze, C, Czirok, S.J., Szabó, A., Lukáts, A, and Szél, A., The system of cerebrospinal fluid-contacting neurons. Its supposed role in the non-synaptic signal transmission of the brain, Histol. Histopathol., 2004, vol. 19, pp. 607–628.Google Scholar
  5. 5.
    Veening, J.G. and Barendregt, H.P., The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid: a review, Cerebrospinal Fluid Res., 2010, 7: 1. doi: 10.1186/1743-8454-7-1CrossRefGoogle Scholar
  6. 6.
    Knobloch, M.S. and Grinevich, V., Evolution of oxytocin pathways in the brain of vertebrates, Front. Behav. Neurosci., 2014, 8: 31. doi: 10.3389/ fnbeh.2014.00031CrossRefGoogle Scholar
  7. 7.
    Grinevich, V., Knobloch-Bollmann, H.S., Eliava, M., Busnelli, M., and Chini, B., Assembling the puzzle: pathways of oxytocin signaling in the brain, Biol. Psychiatr., 2016, vol. 79, pp. 155–164.CrossRefGoogle Scholar
  8. 8.
    Johnson, Z.V. and Young, L.J., Oxytocin and vaso-pressin neural networks: implications for social behavioral diversity and translational neuroscience, Neurosci. Biobehav. Rev., 2017, vol. 76, pp. 87–98.CrossRefGoogle Scholar
  9. 9.
    Belekhova, M.G., Kenigfest, N.B., Chernigovskaya, E.V., and Veselkin, N.P., Selective specificity to calcium-binding proteins calbindin and cal-retinin in the magnocellular neurosecretory hypo-thalamic nuclei of tortoises and turtles, Dokl. Biol. Nauk., 2017, vol. 473, pp. 80–83.CrossRefGoogle Scholar
  10. 10.
    Dwivedi, S. and Prasada Rao, P.D., Cytoarchi-tectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa, Cell Tiss. Res., 1992, vol. 270, pp. 173–188.CrossRefGoogle Scholar
  11. 11.
    Bons, N., Immunocytochemical identification of the mesotocin-and vasotocin-producing systems in the brain of temperature desert lizard species and their modifications by cold exposure, Gen. Comp. Endocrinol., 1983, vol. 52, pp. 56–66.CrossRefGoogle Scholar
  12. 12.
    Fernandez-Liebrez, P., Perez, J., Nadales, A.E., Cifuentes, M., Crondona, J.M., Mancera, J.M., and Rodriguez, E.M., Immunocytochemical study of the hypothalamic magnocellularis neurosecre-tory nuclei of the snake Natrix maura and the turtle Mauremys caspica, Cell Tiss. Res., 1988, vol. 253, pp. 435–445.Google Scholar
  13. 13.
    Smeets, W.J., Sevensma, J.J., and Jonker, A.J., Comparative analysis of vasotocin-like immunore-activity in the brain of the turtle Pseudemys scripta elegans and the snake Python reguium, Brain Behav. Evol., 1990, vol. 35, pp. 65–84.CrossRefGoogle Scholar
  14. 14.
    Bennis, M., Tramu, A.M., and Reperant, J., Vaso-pressin and oxytocin-like systems in the chameleon brain, J. Hirnforsch., 1995, vol. 36, pp. 445–450.Google Scholar
  15. 15.
    Silveira, P.F., Breno, M.C., Martin del Rio, M.P., and Mancera, M., The distribution of vasoto-cin and mesotocin immunoreactivity in the brain of snake, Bothrops jararca, J. Chem. Neuroanat., 2002, vol. 24, pp. 15–26.CrossRefGoogle Scholar
  16. 16.
    Barka-Dahane, Z., Bendjelloul, M., Estabel, J., and Exbrayat, J.M., The distribution of vasotocin and mesotocin immunoreactivity in the hypotha-lamic magnocellular neurosecretory nuclei of the Saharan herbivorous lizard, Uromastix acanthinu-rus Bell, 1825 (Sauria-Agamidae), Histol. Histo-pathol., 2010, vol. 25, pp. 159–175.Google Scholar
  17. 17.
    Lopez-Avalos, M.D., Mancera, M.D., Perez-Figares, J.M., and Fernandez-Llebrez, P., Immu-nocytochemical localization of corticotrophin-re-leasing factor in the brain of the turtle, Mauremys caspica, Anat. Embryol. (Berlin), 1993, vol. 188, pp. 163–171.Google Scholar
  18. 18.
    Brocklehurst, G., The significance of the evolution of the cerebrospinal fluid system, Ann. R Coll. Surg. Eng., 1979, vol. 61, pp. 349–356Google Scholar
  19. 19.
    Gonzalez-Santandez, R., Electron-microscopic study of the secretion of the ependymal cells in the domestic cat (ependymin-beta cells), Acta Anat. (Basel), 1979, vol. 103, pp. 266–277.CrossRefGoogle Scholar
  20. 20.
    Wood, J.H., Neuroendocrinology of cerebrospinal fluid: peptides, steroids, and other hormones, Neu-rosurgery, 1982, vol. 11, pp. 293–305.Google Scholar
  21. 21.
    Kozlovski, G.P., Hormone pathways in cerebro-spinal fluid, Neurol. Clin., 1986, vol. 4, pp. 907–917.CrossRefGoogle Scholar
  22. 22.
    Ito, H., The neurosecretory apparatus in the ventricular wall of the reptilian brain, J. Hirnforsch., 1965, vol. 7, pp. 493–498.Google Scholar
  23. 23.
    Robinson, A.G. and Zimmerman, E.A., Cerebro-spinal fluid and ependymal neurophysin, J. Clin. Invest., 1973, vol. 52, pp. 1260–1267.CrossRefGoogle Scholar
  24. 24.
    Korf, H.W., Wiglietti-Panzica, C., and Panzica, G.C., A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin dove, Cell Tiss. Res., 1983, vol. 228, pp. 149–163.CrossRefGoogle Scholar
  25. 25.
    Paz Doel, R., Garcia Cordovilla, R., Fernandez Soriano, J., Fernandez, E., and Azcoitia, I., Ventricular labyrinths of the ependyma adjacent to the hypothalamic paraventricular nucleus in the turtle Mauremys caspica, J. Hirnforsch., 1986, vol. 27, pp. 431–434.Google Scholar
  26. 26.
    Dubois-Dauphin, M., Tribolett, E., and Dreifuss, J.J., Distribution of neurohypofisial peptides in the guinea pig brain II. An immunocytochemical study of oxytocin, Brain Res., 1989, vol. 496, pp. 66–81.CrossRefGoogle Scholar
  27. 27.
    Amat, P., Amat-Peral, G., Pastor, F.E., Blazguerez, J.L., PelaezAlvarez-Morujo, A., Toranzo, D., and Sanchez, A., Morphological substrates of the ventricular route of secretion and transport of substances in the tubero-infundibular region of the hypothalamus, Bol. Asoc. Med. PR, 1992, vol. 84, pp. 56–66.Google Scholar
  28. 28.
    Bruni, J.E., Ependymal development proliferation and functions: a review, Microsc. Res. Tech., 1988, vol. 41, pp. 2–13.CrossRefGoogle Scholar
  29. 29.
    Rajtova, V. and Kacmarik, J., Fetal ependyma in sheep goat. A scanning electron microscopy study, Anat. Histol. Embryol., 1998, vol. 27, pp. 131–134.CrossRefGoogle Scholar
  30. 30.
    Xiao, M., Ding, J. Wu, L., Han, Q., Wang, H., Zuo, G., and Hu, G., The distribution of neural nitrite oxide synthesis-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxy-tocin, Brain Res., 2005, vol. 1038, pp. 150–162.CrossRefGoogle Scholar
  31. 31.
    Mattew, T.C., Regional analysis of the ependyma of the third ventricle of rat by light and electron microscopy, Anat. Histol. Embryol., 2008, vol. 37, pp. 9–18.Google Scholar
  32. 32.
    Zhang, I.C., Zeng, Y.M., Ting, J., Cao, J.P., and Wang, M.S., The distribution and signaling directions of the cerebrospinal fluid- contacting neurons in the parenchyma of the rat brain, Brain Res., 2003, vol. 989, pp. 1–8.CrossRefGoogle Scholar
  33. 33.
    Djenoune, L., Khabon, H., Joubert, F., Quan, F.B., Figueiredo, S.N., et al., Investigations of cerebrospinal fluid-contacting neurons expressing PKD2 L1: evidence for a conservative system from fish to primates, Front. Neuroanat., 2014, vol. 81, p. 26.Google Scholar
  34. 34.
    Skipor, J. and Thiery, J.C., The chorioid plex-us-cerebrospinal fluid system: underevaluated pathway of neuroendocrine signaling into the brain, Acta Neurobiol. Exp. (Wars), 2008, vol. 68, pp. 414–426.Google Scholar
  35. 35.
    Li, Z., Decavel, C., and Hatton, G.I., Calbindin-D28k in determinating intrinsically generated firing patterns in rat supraoptic neurons, J. Physiol., 1995, vol. 488, pp. 601–608.CrossRefGoogle Scholar
  36. 36.
    Bradbury, A., Bagel, J., Sampson, M., Farhat, N., Ding, W., Swain, G., Prociuk, M., et al., Cerebro-spinal fluid calbindin D concentration as a marker of cerebellar disease progression in Niemann-Pick type C 1 disease, J. Pharmacol. Exp. Ther., 2016, vol. 358, pp. 254–261.CrossRefGoogle Scholar
  37. 37.
    Ludvig, M. and Leng, G., Dendritic peptide release and peptide-dependent behaviors, Nat. Rev. Neurosci., 2006, vol. 7, pp. 126–136.CrossRefGoogle Scholar
  38. 38.
    Carrer, C.S., Oxytocin pathways and the evolution of human behavior, Annu. Rev. Psychol., 2014, vol. 65, pp. 17–39.CrossRefGoogle Scholar
  39. 39.
    Parent, A. and Poitras, D., Morphological organization of monoamine-containing neurons in the hypothalamus of the painted turtle (Chrysemys picta), J. Comp. Neurol., 1974, vol. 154, pp. 379–394.CrossRefGoogle Scholar
  40. 40.
    Parent, A., Functional anatomy and evolution of monoaminergic systems, Amer. Zool., 1984, vol. 24, pp. 783–790.CrossRefGoogle Scholar
  41. 41.
    Polenov, A.L., Konstantinova, M.S., and Garlov, P.E., Gipotalamo-gipofizarnyi neiroendokrinnyi kompleks (Hypothalamo-Hypophyseal Neuroen-docrine Complex), Book 1, pt. 1, 1993, St. Petersburg, pp. 139–186.Google Scholar
  42. 42.
    Smeets, W.J., Catecholamine systems in the CNS of reptiles: structure and functional correlations, Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates, Cambridge, 1994, pp. 103–133.Google Scholar
  43. 43.
    Li, Y.W., Halliday, G.M., Joh, T.H., Geffen, L.B., and Blessing, W.W., Tyrosine hydroxilase-con-taining neurons in the supraoptic and paraventric-ular nucleui of the adult human, Brain Res., 1988, vol. 461, pp. 75–86.CrossRefGoogle Scholar
  44. 44.
    Ueda, S., Takeuchi, Y., and Sano, Y., Immuno-histochemical demonstration of serotonin neurons in the central nervous system of the turtle (Clemmys japonica), Anat. Embryol., 1983, vol. 168, pp. 1–19.CrossRefGoogle Scholar
  45. 45.
    Brauth, S.E., Catecholamine neurons in the brain-stem of the reptile Caiman crocodilus, J. Comp. Neurol., 1988, vol. 270, pp. 313–326.CrossRefGoogle Scholar
  46. 46.
    Lopez, K.H., Jones, R.E., Seufert, D.W., Rand, M.S., and Dores, D.M., Catecholaminergic cells and fibers in the brain of the Anolis carolinen-sis identified by traditional as well as whole-mount immunohistochemistry, Cell Tiss. Res., 1992, vol. 279, pp. 319–337.CrossRefGoogle Scholar
  47. 47.
    Woolsey, S.C. and Crews, D., Species differences in the regulation of thyrosine hydroxylase in Cnemidophorus whiptaik lizards, Develop. Neuro-biol., 2004, vol. 60, pp. 360–368.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. G. Belekhova
    • 1
    Email author
  • N. B. Kenigfest
    • 1
  • E. V. Chernigovskaya
    • 1
  • N. M. Chmykhova
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations