The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 1. Biochemical Aspects

  • N. V. GoncharovEmail author
  • M. A. Terpilowski
  • V. I. Shmurak
  • D. A. Belinskaya
  • P. V. Avdonin
Comparative and Ontogenic Biochemistry


The long-term effects of acute organophosphate (OP) poisoning remain poorly studied, while experimental models usually disregard species-related specificity of rodents as model objects. Here we present two toxicological models and a comparative analysis of a wide range of biochemical blood indices in their dynamics over 3 months after acute rat poisoning with paraoxon. As expected, the most sensitive biochemical index within the first hours and days after OP poisoning was whole blood acetylcholinesterase activity, which decreased by almost an order of magnitude in all experimental groups 3 h after poisoning. Changes in the parameters of carbohydrate and fat metabolism (triglyceride, free fatty acid, D-3-hydroxybutyrate, cholesterol and glycerol levels) were detected in experimental groups at different time points after poisoning. Statistically significant changes in a number of biochemical markers were found in positive control rats relative to intact rodents.


rodents blood plasma cholinesterases carboxylesterase organophosphates translational medicine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimoyama, M., Laulederkind, S.J., De Pons, J., Nigam, R., Smith, J.R., Tutaj, M., Petri, V., Hayman, G.T., Wang, S.J., Ghiasvand, O., Thota, J., and Dwinell, M.R., Exploring human disease using the rat genome database, Dis. Model. Mech., 2016, vol. 9,no. 10, pp. 1089–1095.CrossRefGoogle Scholar
  2. 2.
    Ellenbroek, B. and Youn, J., Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech., 2016, vol. 9,no. 10, pp. 1079–1087.CrossRefGoogle Scholar
  3. 3.
    Ukolov, A.I., Kessenikh, E.D., Radilov, A.S., and Goncharov, N.V., Toxicometabolomics: identification of markers of chronic exposure to low doses of aliphatic hydrocarbons, J. Evol. Biochem. Physiol., 2017, vol. 53,no. 1, pp. 25–36.CrossRefGoogle Scholar
  4. 4.
    Korf, E.A., Kubasov, I.V., Vonsky, M.S., Novozhilov, A.V., Runov, A.L., Kurchakova, E.V., Matrosova, E.V., Tavrovskaya, T.V., and Goncharov, N.V., Green tea extract increases expression of genes responsible for regulation of calcium balance in rat slow-twitch muscles under conditions of exhausting exercise, Bull. Exp. Biol. Med., 2017, vol. 164,no. 1, pp. 6–9. doi: 10.1007/s10517-017-3913-9CrossRefGoogle Scholar
  5. 5.
    Mindukshev, I.V., Skverchinskaya, E.A., Khme-levskoy, D.A., Dobrylko, I.A., and Goncharov, N.V., Acetylcholinesterase inhibitor paraoxon augments oxidative stress induced in vitro in rat erythrocytes, Biol. Membr., 2017, vol. 34,no. 6, pp. 147–154. doi: 10.7868/S0233475517060081Google Scholar
  6. 6.
    Sobolev, V.E., Jenkins, R.O., and Goncharov, N.V., Sulfated glycosaminoglycans in bladder tissue and urine of rats after acute exposure to paraoxon and cyclophosphamide, Exp. Toxicol. Pathol., 2017, vol. 69,no 6, pp. 339–347.CrossRefGoogle Scholar
  7. 7.
    Singh, D.P., Borse, S.P., Rana, R., and Nivsarkar, M., Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine, Food Chem. Toxicol., 2017, vol. 108, pp. 43–52.CrossRefGoogle Scholar
  8. 8.
    Barker Haliski, M.L., Löscher, W., White, H.S., and Galanopoulou, A.S., Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy, Epilepsia, 2017, vol. 58,suppl. 3, pp. 39–47.CrossRefGoogle Scholar
  9. 9.
    Hatfield, M.J., Umans, R.A., Hyatt, J.L., Edwards, C.C., Wierdl, M., Tsurkan, L., Taylor, M.R., and Potter, P.M., Carboxylesterases: general detoxifying enzymes, Chem. Biol. Interact., 2016, vol. 259, pp. 327–331.CrossRefGoogle Scholar
  10. 10.
    Lian, J., Nelson, R., and Lehner, R., Carboxyles-terases in lipid metabolism: from mouse to human, Protein Cell, 2018, vol. 9,no. 2, pp. 178–195.CrossRefGoogle Scholar
  11. 11.
    Li, B., Sedlacek, M., Manoharan, I., Boopathy, R., Duysen, E.G., Masson, P., and Lockridge, O., Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma, Biochem. Pharmacol., 2005, vol. 70, pp. 1673–1684.CrossRefGoogle Scholar
  12. 12.
    Goncharov, N.V., Belinskaya, D.A., Razygraev, A.V., and Ukolov, A.I., On the enzymatic activity of albumin, Russ. J. Bioorg. Chem., 2015, vol. 41,no. 2, pp. 113–124.CrossRefGoogle Scholar
  13. 13.
    Goncharov, N.V., Terpilovsky, M.A., Shmurak, V.I., Belinskaya, D.A., and Avdonin, P.V., Comparative analysis of esterase and paraoxonase activity of different types of albumin, Zh. Evol. Bio-khim. Fiziol., 2017, vol. 53,no. 4, pp. 241–250.Google Scholar
  14. 14.
    Goncharov, N.V., Belinskaya, D.A., Shmurak, V.I., Terpilowski, M.A., Jenkins, R.O. and Avdonin, P.V., Serum albumin binding and esterase activity: mechanistic interactions with organo-phosphates, Molecules, 2017, vol. 22,no. 7. Pii: E1201. doi: 10.3390/molecules22071201Google Scholar
  15. 15.
    Maxwell, D.M., Brecht, K.M., and O’Neill, B.L., The effect of carboxylesterase inhibition on in-terspecies differences in soman toxicity, Toxicol. Lett., 1987, vol. 39,no. 1, pp. 35–42.CrossRefGoogle Scholar
  16. 16.
    Maxwell, D.M., The specificity of carboxylesterase protection against the toxicity of organophospho-rus compounds, Toxicol. Appl. Pharmacol., 1992, vol. 114,no. 2, pp. 306–312.CrossRefGoogle Scholar
  17. 17.
    Duysen, E.G., Cashman, J.R., Schopfer, L.M., Nachon, F., Masson, P., and Lockridge, O., Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresylsaligenin phosphate, cyclo-sarin thiocholine, tabun thiocholine, and carbofu-ran, Chem. Biol. Interact., 2012, vol. 195,no. 3, pp. 189–198.CrossRefGoogle Scholar
  18. 18.
    Duysen, E.G., Koentgen, F., Williams, G.R., Timperley, C.M., Schopfer, L.M., Cerasoli, D.M., and Lockridge, O., Production of ES1 plasma carboxy-lesterase knockout mice for toxicity studies, Chem. Res. Toxicol., 2011, vol. 24, pp. 1891–1898.CrossRefGoogle Scholar
  19. 19.
    Flannery, B.M., Bruun, D.A., Rowland, D.J., Banks, C.N., Austin, A.T., Kukis, D.L., Li, Y., Ford, B.D., Tancredi, D.J., Silverman, J.L., Cherry, S.R., and Lein, P.J., Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication, J. Neuroinflam., 2016, vol. 13,no. 1, p. 267.CrossRefGoogle Scholar
  20. 20.
    Garnyuk, V.V., Voitenko, N.G., Volkova, M.O., Maksakova, A.M., and Goncharov, N.V., Hema-topoiesis in laboratory animals at acute intoxication by organophosphate toxic agents, Toksikol. Vestn., 2012, no. 4, pp. 35–40.Google Scholar
  21. 21.
    Shmurak, V.I., Kurdyukov, I.D., Nadeev, A.D., Voitenko, N.G., Glashkina, L.M., and Goncharov, N.V., Biochemical markers of intoxication with organophosphate toxic agents, Toksikol. Vestn., 2012, no. 4, pp. 30–34.Google Scholar
  22. 22.
    Chambers, J.P., Hartgraves, S.L., Murphy, M.R., Wayner, M.J., Kumar, N., and Valdes, J.J., Effects of three reputed carboxylesterase inhibitors upon rat serum esterase activity, Neurosci. Biobehav. Rev., 1991, vol. 15,no. 1, pp. 85–88.CrossRefGoogle Scholar
  23. 23.
    Rukovodstvo po eksperimental’nomu (dokliniches-komu) izucheniyu novykh farmakologicheskikh veshchestv (Manual on Experimental (Preclinical) Study of New Pharmacological Agents), Khabriev, R.U., Ed., Moscow, 2005.Google Scholar
  24. 24.
    Rukovodstvo po laboratornym zhivotnym i alterna-tivnym modelyam v biomeditsinskikh issledovani-yakh (Handbook of Laboratory Animals and Alternative Models in Biomedical Studies), Karkishchenko, N.N. and Grachev, S.V., Eds., Moscow, 2010.Google Scholar
  25. 25.
    Prokofieva, D.S., Voitenko, N.G., Gustyleva, L.K., Babakov, V.N., Savelieva, E.I., Jenkins, R.O., and Goncharov, N.V., Microplate spectroscopic methods for determination of the organophosphate soman, J. Environ. Monit., 2010, vol. 12,no. 6, pp. 1349–1354.CrossRefGoogle Scholar
  26. 26.
    Prokofieva, D.S., Jenkins, R.O., and Goncharov, N.V., Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results, Anal. Biochem., 2012, vol. 424,no. 2, pp. 108–113.CrossRefGoogle Scholar
  27. 27.
    Phuntuwate, W., Suthisisang, C., Koanantakul, B., Mackness, M.I., and Mackness, B., Paraoxonase 1 status in the Thai population, J. Hum. Genet., 2005, vol. 50,no. 6, pp. 293–300.CrossRefGoogle Scholar
  28. 28.
    Prez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9,no. 3, pp. 21–29.CrossRefGoogle Scholar
  29. 29.
    McKinney, W., Data structures for statistical computing in python, Proc. of the 9th Python in Science Conference, 2010, vol. 445, pp. 51–56.Google Scholar
  30. 30.
    Van Der Walt, S., Colbert, S. C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 2011, vol. 13,no. 2, pp. 22–30.CrossRefGoogle Scholar
  31. 31.
    Hunter, J.D., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9,no. 3, pp. 90–95.CrossRefGoogle Scholar
  32. 32.
    Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B, Methodol., 1995, vol. 57, pp. 289–300.Google Scholar
  33. 33.
    Sklan, E.H., Lowenthal, A., Korner, M., Ritov, Y., Landers, D.M., Rankinen, T., Bouchard, C., Leon, A.S., Rice, T., Rao, D.C., Wilmore, J.H., Skinner, J.S., and Soreq, H., Acetylcholinesterase/ paraoxonase genotype and expression predict anxiety scores in health, risk factors, exercise training, and genetics study, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101,no. 15, pp. 5512–5517.CrossRefGoogle Scholar
  34. 34.
    Das, U.N., Acetylcholinesterase and butyrylcholin-esterase as possible markers of low-grade systemic inflammation, Med. Sci. Monit., 2007, vol. 13,no. 12, RA, 214–221.Google Scholar
  35. 35.
    Thayer, J.F. and Sternberg, E.M., Neural aspects of immunomodulation: focus on the vagus nerve, Brain Behav. Immun., 2010, vol. 24,no. 8, pp. 1223–1228.CrossRefGoogle Scholar
  36. 36.
    Dong, M.X., Xu, X.M., Hu, L., Liu, Y., Huang, Y.J., and Wei, Y.D., Serum butyrylcholin-esterase activity: a biomarker for parkinson’s disease and related dementia, Biomed. Res. Int., 2017, vol. 2017, p. 1524107.Google Scholar
  37. 37.
    Shields, G.S., Moons, W.G., and Slavich, G.M., Inflammation, selfregulation, and health: an im-munologic model of self-regulatory failure, Per-spect. Psychol. Sci., 2017, vol. 12,no 4, pp. 588–612.CrossRefGoogle Scholar
  38. 38.
    Reale, M., Costantini, E., Di Nicola, M., D’ Angelo, C., Franchi, S., D’ Aurora, M., Di Bari, M., Orlando, V., Galizia, S., Ruggieri, S., Stuppia, L., Gasperini, C., Tata, A.M., and Gatta, V., Butyrylcholinesterase and acetylcholin-esterase polymorphisms in multiple sclerosis patients: implication in peripheral inflammation, Sci. Rep., 2018, vol. 8,no. 1, p. 1319.CrossRefGoogle Scholar
  39. 39.
    Kurdyukov, I.D., Shmurak, V.I., Nadeev, A.D., Voitenko, N.G., Prokofieva, D.S., and Goncharov, N.V., “Esterase status” of the organism at exposure to toxic substances and pharmaceutical preparations, Toksikol. Vestn., 2012, no. 6, pp. 6–13.Google Scholar
  40. 40.
    Orcholski, M.E., Khurshudyan, A., Shamskhou, E.A., Yuan, K., Chen, I.Y., Kodani, S.D., Morisseau, C., Hammock, B.D., Hong, E.M., Alexandrova, L., Alastalo, T.P., Berry, G., Zamanian, R.T., and de Jesus Perez, V.A., Reduced car-boxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension, Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, vol. 313,no. 2, L252–L266.CrossRefGoogle Scholar
  41. 41.
    Iso, H., Jacobs, D.R. Jr., Wentworth, D., Neaton, J.D., and Cohen, J.D., Serum cholesterol levels and six-year mortality from stroke in 350.977 men screened for the multiple risk factor intervention trial, N. Engl. J. Med., 1989, vol. 320,no. 14, pp. 904–910.CrossRefGoogle Scholar
  42. 42.
    Vauthey, C., de Freitas, G.R., van Melle, G., Devuyst, G., and Bogousslavsky, J., Better outcome after stroke with higher serum cholesterol levels, Neurology, 2000, vol. 54, no. 10, pp. 1944–1949.CrossRefGoogle Scholar
  43. 43.
    Suzuki, K., Izumi, M., Sakamoto, T., and Hayashi, M., Blood pressure and total cholesterol level are critical risks especially for hemorrhagic stroke in Akita, Japan, Cerebrovasc. Dis., 2011, vol. 31,no. 1, pp. 100–106.CrossRefGoogle Scholar
  44. 44.
    Markaki, I., Nilsson, U., Kostulas, K., and Sjöstrand, C., High cholesterol levels are associated with improved long-term survival after acute ischemic stroke, J. Stroke Cerebrovasc. Dis., 2014, vol. 23,no. 1, e47–53.CrossRefGoogle Scholar
  45. 45.
    Zhao, W., An, Z., Hong, Y., Zhou, G., Guo, J., Zhang, Y., Yang, Y., Ning, X., and Wang, J., Low total cholesterol level is the independent predictor of poor outcomes in patients with acute ischemic stroke: a hospital-based prospective study, BMC Neurol., 2016, vol. 16, e36.CrossRefGoogle Scholar
  46. 46.
    Zhou, G., An, Z., Zhao, W., Hong, Y., Xin, H., Ning, X., and Wang, J., Sex differences in outcomes after stroke among patients with low total cholesterol levels: a large hospital-based prospective study, Biol. Sex Differ., 2016, vol. 7, e62.CrossRefGoogle Scholar
  47. 47.
    Fukui, K., Ferris, H.A., and Kahn, C.R., Effect of cholesterol reduction on receptor signaling in neurons, J. Biol. Chem., 2015, vol. 290,no. 44, pp. 26 383–26 392.CrossRefGoogle Scholar
  48. 48.
    Ferris, H.A., Perry, R.J., Moreira, G.V., Shulman, G.I., Horton, J.D., and Kahn, C.R., Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114,no. 5, pp. 1189–1194.CrossRefGoogle Scholar
  49. 49.
    Landin, K., Blennow, K., Wallin, A., and Gottfries, C.G., Low blood pressure and blood glucose levels in Alzheimer’s disease. Evidence for a hypometabolic disorder? J. Intern. Med., 1993, vol. 233,no. 4, pp. 357–363.CrossRefGoogle Scholar
  50. 50.
    Marshall, W., Lapsley, M., and Day, A., Clinical Chemistry, Edinburgh, 2016.Google Scholar
  51. 51.
    Buchet, R., Millán, J.L., and Magne, D., Multisys-temic functions of alkaline phosphatases, Methods Mol. Biol., 2013, vol. 1053, pp. 27–51.CrossRefGoogle Scholar
  52. 52.
    Deshpande, L.S., Blair, R.E., Huang, B.A., Phillips, K.F., and DeLorenzo, R.J., Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats, Neurotoxicol. Teratol, 2016, vol. 56, pp. 81–86.CrossRefGoogle Scholar
  53. 53.
    Deshpande, L.S., Blair, R.E., Phillips, K.F., and DeLorenzo, R.J., Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication, Ann. NY Acad. Sci., 2016, vol. 1374,no. 1, pp. 176–183.CrossRefGoogle Scholar
  54. 54.
    Sebastián-Serrano, Á., de Diego-García, L., Mar-tínez Frailes, C, Ávila, J., Zimmermann, H., Millán, J.L., Miras-Portugal, M.T., and Díaz-Hernández, M., Tissue-nonspecific alkaline phosphatase regulates purinergic transmission in the central nervous system during development and disease, Com-put. Struct. Biotechnol. J., 2014, vol. 13, pp. 95–100.CrossRefGoogle Scholar
  55. 55.
    Abbott, C.A., Mackness, M.I., Kumar, S., Olukoga, A.O., Gordon, C, Arrol, S., Bhatnagar, D., Boulton, A.J., and Durrington, P.N., Relationship between serum butyrylcholinesterase activity, hy-pertriglyceridaemia and insulin sensitivity in diabetes mellitus, Clin. Sci. (Lond), 1993, vol. 85,no. 1, pp. 77–81.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Goncharov
    • 1
    • 2
    Email author
  • M. A. Terpilowski
    • 2
  • V. I. Shmurak
    • 1
  • D. A. Belinskaya
    • 2
  • P. V. Avdonin
    • 3
  1. 1.Research Institute of Hygiene, Occupational Pathology and Human EcologyFederal Medical and Biological AgencySt. PetersburgRussia
  2. 2.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations