Advertisement

Histamine-Mediated Regulation of Electrical Activity during the Bladder–Urethra Interaction in Rats

  • K. V. Kazaryan
  • M. A. Danielyan
  • R. G. Chibukhchyan
  • Sh. G. Margaryan
Comparative and Ontogenic Physiology

Abstract

The effect of histamine on background spontaneous electrical activity of the interrelated bladder and urethra was studied in rats. The basic characteristics of pacemaker activity (action potential amplitude, average peak rise rate, peak rise time, peak half-width, rhythmogenicity frequency) were analyzed both in normal conditions and upon exposure to histamine (10–4 mol/L). A comparison of the action potential parameters in the above organs demonstrated far lower values of the amplitude (by 34.19%; p ≤ 0.001), peak rise rate (by 30.39%; p ≤ 0.01) and peak rise time (by 18%; p ≤ 0.01) at a reduced rhythmogenicity frequency. Histamine evoked a considerable increase in the amplitude and its rise rate in the bladder (by 50.59 and 56.36%, respectively; p ≤ 0.001) and rhythmogenicity frequency (by 18%; p ≤ 0.01) at a constancy of the remaining two parameters. In the urethra, no obvious changes were detected in the action potential parameters. Morphohistochemical analysis also supported the involvement of histamine in the activation of rhythmogenicity only in the bladder. Thus, histamine is not implicated in the genesis of tonic contractions in the urethra, in contrast to its activating effect on the bladder.

Keywords

spontaneous activity activity parameters histamine action potentials bladder urethra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, K.E. and Arner, A., Urinary bladder contraction and relaxation: physiology and pathophysiology, Physiol. Rev., 2004, vol. 84, no. 3, pp. 935–986.CrossRefPubMedGoogle Scholar
  2. 2.
    McHale, N.G., Hollywood, M.A., Sergeant, G.P., Shafei, M., Thornbury, K.T., and Ward, S.M., Organization and function of ICC in the urinary tract, J. Physiol., 2006, vol. 576, pt. 3, pp. 689–694.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brading, A.F., Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function, J. Physiol., 2006, no. 570, pt. 1, pp. 13–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fry, C.H., Meng, E., and Young, J.S., The physiological function of lower urinary tract smooth muscle, Auton. Neurosci., 2010, vol. 19, no. 154, pp. 3–13.CrossRefGoogle Scholar
  5. 5.
    Drake, M.J., Harvey, I.J., and Gillespie, J.I., Autonomous activity in the isolated guinea pig bladder, Exp. Physiol., 2003, vol. 88, no. 1, pp. 19–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Sui, G., Fry, C.H., Malone-Lee, J., and Wu, C., Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders, Cell Calcium, 2009, vol. 45, no. 5, pp. 456–464.CrossRefPubMedGoogle Scholar
  7. 7.
    McHale, N.G., Hollywood, M.A., Sergeant, G.P., Shafei, M., Thornbury, K.T., and Ward, S., Organization and function of ICC in the urinary tract, J. Physiol., 2006, vol. 576, pt. 3, pp. 689–694.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hashitani, H. and Edwards, F.R., Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra, J. Physiol., 1999, vol. 514, pt. 2, pp. 459–470.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hashitani, H., Van Helden, D.F., and Suzuki, H., Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra, Br. J. Pharmacol., 1996, vol. 118, no. 7, pp. 1627–1632.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bertaccini, G., Zappia, L., Bezzi, E., and Potnezoni, D., Histamine receptors in the human ureter, Pharmac. Res. Commun., 1983, vol. 15, pp. 157–166.CrossRefGoogle Scholar
  11. 11.
    Bennedito, S., Prieto, D., Rivera, L., and Costa Garcia-Saeriston, A., Mechanisms implicated in the histamine response of the ureterovesical junction, J. Urol., 1991, vol. 146, no. 1, pp. 184–187.CrossRefGoogle Scholar
  12. 12.
    Neuhaus, J., Weimann, A., Stolzenburg, J.U., Dawood, W., Schwalenberg, T., and Dorschner, W., Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes, World J. Urol., 2006, vol. 24, no. 2, pp. 202–209.CrossRefPubMedGoogle Scholar
  13. 13.
    Bicer, F., Altuntas, C.Z., Izgi, K., Ozer, A., Kavran, M., Tuohy, V.K., and Daneshgari, F., Chronic pelvic allodynia is mediated by CCL2 through mast cells in an experimental autoimmune cystitis model, Am. J. Physiol. Renal Physiol., 2015, vol. 308(2), pp. 103–113.CrossRefGoogle Scholar
  14. 14.
    Yilmaz, E., Batislam, E., Deniz, T., and Yuvanc, E., Histamine receptor antagonist in symptomatic treatment of renal colic accompanied by nausea: two birds with one stone, Urol. J., 2009, vol. 73, no.1, pp. 32–36.CrossRefGoogle Scholar
  15. 15.
    Kazaryan, K.V., Vantsyan, V.Ts., and Simonyan, L.G., Role of histamine in regulation of spontaneous electrical activity of the rat ureter and adjacent bladder zone, Ross. Fiziol. Zh., 2011, no. 12, pp. 1319–1326.Google Scholar
  16. 16.
    Ugaily-Thuoesius, L., Thuiesius, O., Angelo-Khattar, M., Sabha, M., and Sivanandasinghni, P., Mast cells and histamine responses of the ureter, ultrastructural features of cell-to-cell associations and functional implications, Urol. Rev., 1988, vol. 16, pp. 287–293.Google Scholar
  17. 17.
    Kazaryan, K.V., Unanyan, N.G., Savayan, A.A., Piliposyan, T.A., Mkrtchyan, A.V., and Manukyan, A.M., Identification of the characteristics of spontaneous electrical activity in the rhythmogenic areas in rats, Zh. Evol. Biokhim. Fiziol., 2015, vol. 51, no. 5, pp. 340–346.PubMedGoogle Scholar
  18. 18.
    Hashitani, H., Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis, J. Physiol., 2006, vol. 576, pt. 3, pp. 707–714.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Osman, F., Romics, I., Nyírády, P., Monos, E., and Nádasy, G.L., Ureteral motility, Acta Physiol. Hungarica, 2009, vol. 96, no. 4, pp. 409–426.CrossRefGoogle Scholar
  20. 20.
    Sanders, K.M., Koh, S.D., and Ward, S.M., Interstitial cells of Cajal as pacemakers in the gastrointestinal tract, Ann. Rev. Physiol., 2006, vol. 68, pp. 307–343.CrossRefGoogle Scholar
  21. 21.
    Bramich, N.J. and Brading, A.F., Electrical properties of smooth muscle in the guinea-pig urinary bladder, J. Physiol., 1996, vol. 492, no. 1, pp. 185–198.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hashitani, H. and Suzuki, H., Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ, J. Physiol., 2007, vol. 583, pp. 505–519.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    McCloskey, K.D., Interstitial cells of Cajal in the urinary tract, Handbook of Experimental Pharmacology, 2002, vol. 202, pp. 233–254.CrossRefGoogle Scholar
  24. 24.
    Moore, K. and Agur, A., Essential Clinical Anatomy, 3rd ed., Philadelphia, 2007, pp. 227–228.Google Scholar
  25. 25.
    Meliksetyan, I., The reveling of Ca2+-dependent activity of acid phosphatase in cell structures of rat brain, Morfologiya, 2007, vol. 131, pp. 77–80.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Kazaryan
    • 1
  • M. A. Danielyan
    • 1
  • R. G. Chibukhchyan
    • 1
  • Sh. G. Margaryan
    • 1
  1. 1.L.A. Orbeli Institute of PhysiologyArmenian Academy of SciencesYerevanArmenia

Personalised recommendations