Skip to main content
Log in

Evolutionary Aspects of Cardioprotection

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review addresses the mechanisms of adaptation of the myocardium and cells of the cardiovascular system to hypoxia and ischemia as well as biochemical mechanisms of cardioprotection in animals of different phylogenetic levels. A special focus is placed on general adaptive strategies developed by evolutionarily distant animals in response to hypoxia and ischemia and on preconditioning and myocardial hibernation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Alfieri, O., Pardini, A., Marzollo, P., and Visioli, O., Oxygen free radicals and myocardial damage: protective role ofthiol-containing agents, Am. J. Med., 1991, vol. 91, pp. S95–S105.

    Article  Google Scholar 

  2. Dolzhenko, M.N., To the question of the expediency of metabolic cardioprotection in the era of evidence-based medicine, ML, 2012, nos. 2–3 (88–89), pp. 1–8.

    Google Scholar 

  3. Spath, N.B., Mills, N.L., and Cruden, N.L., Novel cardioprotective and regenerative therapies in acute myocardial infarction: a review of recent and ongoing clinical trials, Future Cardiol., 2016, vol. 12, pp. 655–672.

    Article  CAS  PubMed  Google Scholar 

  4. Agadzhanyan, N.A., Polunin, I.N., Stepanov, V.K., and Polyakov, V.N., Chelovek v usloviyakh gipokapnii i giperkapnii (A Man under Hypocapnic and Hypercapnic Conditions), Astrakhan, Moscow, 2001.

    Google Scholar 

  5. Gridin, L.A., Modern ideas about physiological and medioprophilactic effects of hypoxia and hypercapnia, Meditsina, 2016, no. 3, pp. 45–68.

    Google Scholar 

  6. Charniy, A.M., Patofiziologiya gipoksicheskikh sostoyaniy (Pathophysiology of Hypoxic States), Moscow, 1961.

    Google Scholar 

  7. Shik, L.L. and Kanaev, N.N., Rukovodstvo po klinicheskoi fiziologii dykhaniya (Handbook of Clinical Physiology of Respiration), Leningrad, 1980.

    Google Scholar 

  8. Barbashova, Z.I., Akklimatizatsiya k gipoksii i ee fiziologicheskie mekhanizmy (Acclimation to Hypoxia and its Physiological Mechanisms), Leningrad, 1960.

    Google Scholar 

  9. Nilsson, G.E., Vaage, J., and Stenslkken, K.O., Oxygen-and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, vol. 308, pp. 50–61.

    Article  Google Scholar 

  10. Ilyina, T.N., Ilyukha, V.A., Baishnikova, I.V., Belkin, V.V., Sergina, S.N., and Antonova, E.P., Antioxidant defense system in tissues of semiaquatic mammals, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 282–288.

    Article  Google Scholar 

  11. Silkin, Yu.A. and Silkina, E.N., Effect of hypoxia on physiological and biochemical blood parameters in some marine fish, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 5, pp. 421–425.

    PubMed  Google Scholar 

  12. Nayler, W.G. and Daily, M.D., Fiziologiya i pathofiziologiya serdtsa (Physiology and Pathophysiology of the Heart), Moscow, 1990, vol. l, pp. 556–578.

    Google Scholar 

  13. Allen, D.G. and Orchard, C.H., Measurements of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia, J. Mol. Cell Cardiol., 1984, vol. 16, pp. 117–128.

    Article  CAS  PubMed  Google Scholar 

  14. Potter, S. and Fothergill-Gilmore, L.A., Molecular evolution: The origin of glycolysis, Biochem. Educ., 1993, vol. 21, pp. 45–48.

    Article  CAS  Google Scholar 

  15. Oslancová, A. and Janecek, S., Evolutionary relatedness between glycolytic enzymes most frequently occurring in genomes, Folia Microbiol. (Praha), 2004, vol. 49, pp. 247–258.

    Article  Google Scholar 

  16. Meerson, F.Z., Adaptation medicine: mechanisms and protective effects of adaptation, Hypoxia Medical J., M., 1993, pp. 168–226.

    Google Scholar 

  17. Czyzyk-Krzeska, M.F., Molecular aspects of oxygen sensing in physiological adaptation to hypoxia, Respir-Physiol., 1997, vol. 110, pp. 99–111.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, H.C., Guo, F., Zhang, L.N., Zhang, R., Chen, Q., Li, J.X., Yin, J., and Wang, Y.L., Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, pp. H2280–H2287.

    Article  CAS  PubMed  Google Scholar 

  19. Seehase, M., Quentin, T., Wiludda, E., Hellige, G., Paul, T., and Schiffmann, H., Gene expression of the Na–Ca2+ exchanger, SERCA2a and calsequestrin after myocardial ischemia in the neonatal rabbit heart, Biol. Neonate, 2006, vol. 90, pp. 174–184.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, W., Peng, Y., Wang, Y., Zhao, X., and Yuan, Z., Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway, Clin. Exp. Pharmacol. Physiol., 2009, vol. 36, pp. 899–903.

    Article  CAS  PubMed  Google Scholar 

  21. Viswanath, K., Bodiga, S., Balogun, V., Zhang, A., and Bodiga, V.L., Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation, Biometals, 2011, vol. 24, pp. 171–180.

    Article  CAS  PubMed  Google Scholar 

  22. Silverman, H.S., Wei, S., Haigney, M.C., Ocampo, C.J., and Stern, M.D., Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia, Circ. Res., 1997, vol. 80, pp. 699–707.

    Article  CAS  PubMed  Google Scholar 

  23. Sun, Y. and MacRae, T.H., Small heat shock proteins: molecular structure and chaperone function, Cell Mol. Life Sci., 2005, vol. 62, pp. 2460–2476.

    Article  CAS  PubMed  Google Scholar 

  24. Paier, A., Agewall, S., and Kublickiene, K., Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease, Heart Vessels, 2009, vol. 24, pp. 260–266.

    Article  PubMed  Google Scholar 

  25. Vilahur, G., Cubedo, J., Casani, L., Padro, T., Sabate-Tenas, M., Badimon, J.J., and Badimon, L., Reperfusion-triggered stress protein response in the myocardium is blocked by post-conditioning. Systems biology pathway analysis highlights the key role of the canonical aryl-hydrocarbon receptor pathway, Eur. Heart J., 2013, vol. 34, pp. 2082–2093.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, B., Zhou, H.S., Cheng, Q., Lei, L., and Hu, B., Overexpression of HSP27 in cultured human aortic smooth muscular cells reduces apoptosis induced by low-frequency and low-energy ultrasound by inhibition of an intrinsic pathway, Genet. Mol. Res., 2013, vol. 12, pp. 6588–6601.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J., Chen, P., Li, Y., Ardell, C., Der, T., Shohet, R., Chen, M., and Wright, G.L., HIF-1a in heart: protective mechanisms, Am. J. Physiol. Heart Circ. Physiol., 2013, vol. 305, pp. H821–H828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Semenza, G.L., Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology, Trends Mol. Med., 2001, vol. 7, pp. 345–350.

    Article  CAS  PubMed  Google Scholar 

  29. Bekeredjian, R., Walton, C.B., MacCannell, K.A., Ecker, J., Kruse, F., Outten, J.T., Sutcliffe, D., Gerard, R.D., Bruick, R.K., and Shohet, R.V., Conditional HIF-1alpha expression produces a reversible cardiomyopathy, PLoS One, 2010, vol. 5, p. e11693.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guimarães-Camboa, N., Stowe, J., Aneas, I., Sakabe, N., Cattaneo, P., Henderson, L., Kilberg, M.S., Johnson, R.S., Chen, J., McCulloch, A.D., Nobrega, M.A., Evans, S.M., and Zambon, A.C., HIF1a Represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes, Dev. Cell, 2015, vol. 33, pp. 507–521.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marden, J.H., Fescemyer, H.W., Schilder, R.J., Doerfler, W.R., Vera, J.C., and Wheat, C.W., Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations, Evolution, 2013, vol. 67, pp. 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, L., Wang, Y.H., Ai, C.X., Zheng, J.L., Wu, C.W., and Cai, R., Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress, Fish Physiol. Biochem., 2016, vol. 42, pp. 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  33. Yin, H.L., Luo, C.W., Dai, Z.K., Shaw, K.P., Chai, C.Y., and Wu, C.C., Hypoxia-inducible factor-1a, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease, Kaohsiung J. Med. Sci., 2016, vol. 32, pp. 348–355.

    Article  PubMed  Google Scholar 

  34. Yue, X., Lin, X., Yang, T., Yang, X., Yi, X., Jiang, X., Li, X., Li, T., Guo, J., Dai, Y., Shi, J., Wei, L., Youker, K.A., Torre-Amione, G., Yu, Y., Andrade, K.C., and Chang, J., Rnd3/RhoE modulates hypoxia-inducible factor 1a/vascular endothelial growth factor signaling by stabilizing hypoxia-inducible factor 1a and regulates responsive cardiac angiogenesis, Hypertension, 2016, vol. 67, pp. 597–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansen, A.H., Nielsen, J.J., Saltin, B., and Helsten, Y., Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension, J. Hypertens., 2010, vol. 28, pp. 1176–1185.

    Article  CAS  PubMed  Google Scholar 

  36. Ferrara, N. and Davis-Smyth, T., The biology of vascular endothelial growth factor, Endocr. Rev., 1997, vol. 18, pp. 4–25.

    Article  CAS  PubMed  Google Scholar 

  37. Eklund, L., Kangas, J., and Saharinen, P., Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems, Clin. Sci. (Lond.), 2017, vol. 131, pp. 87–103.

    Article  CAS  Google Scholar 

  38. Mrochek, A.G., Basalay, M.V., Barsukevich, V.Ch., and Gurin, A.V., Endogenous cardioprotective phenomena and their mechanisms, Kardiol. Belarus., 2014, vol. 34, no. 3, pp. 88–109.

    Google Scholar 

  39. Gubareva, L.I., Adaptation systems of the organism during pre-and postnatal periods of ontogenesis under the effect of anthropogenic factors of the environment, Doctorate Sci. Diss., Stavropol, 1999.

    Google Scholar 

  40. Kozlovskii, V.I., Humoral mechanisms of endothelium-dependent regulation of coronary blood flow, Doctorate Sci. Diss., Minsk, 2015.

    Google Scholar 

  41. Moncada, S., Palmer, R.M.J., and Higgs, E.A., Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 1991, vol. 43, pp. 109–141.

    CAS  PubMed  Google Scholar 

  42. Malyshev, I.Yu. and Manukhina, E.B., Stress, adaptation, and nitric oxide, Biokhim., 1998, vol. 6, no. 7, pp. 992–1006.

    Google Scholar 

  43. Torreilles, J., Nitric oxide: one of the more conserved and widespread signaling molecules, Front. Biosci., 2001, vol. 6, pp. D1161–D1172.

    CAS  PubMed  Google Scholar 

  44. Silva, B.R., Paula, T.D., Paulo, M., and Bendhack, L.M., Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system, Med. Chem., 2016, PubMed PMID: 28031017.

    Google Scholar 

  45. Moncada, S., Gryglewski, R., Bunting, S., and Vane, J.R., An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature, 1976, vol. 263, pp. 663–665.

    Article  CAS  PubMed  Google Scholar 

  46. Malakhova, Z.L., Vasina, E.Yu., Vorobyov, E.A., Nesterovich, I.I., and Vlasov, T.D., A noninvasive method to study the endothelial hyperpolarizing factor in clinic, Region. Krovoobr. Mikrotsirkul., 2013, vol. 12, no. 4, pp. 70–74.

    Google Scholar 

  47. Rahimtoola, S., The hibernating myocardium, Am. Heart J., 1989, vol. 117, pp. 211–221.

    Article  CAS  PubMed  Google Scholar 

  48. Rahimtoola, S.H., Concept and evaluation of hibernating myocardium, Annu. Rev. Med., 1999, vol. 50, pp. 75–86.

    Article  CAS  PubMed  Google Scholar 

  49. Opie, L.H., Cardiac metabolism in ischemic heart disease, Arch. Mal. Coeur. Vaiss., 1999, vol. 92, pp. 1755–1760.

    CAS  PubMed  Google Scholar 

  50. Brauwald, E. and Rutherford, J.D., Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”, J. Am. Coll. Cardiol., 1986, vol. 8, pp. 1467–1470.

    Article  Google Scholar 

  51. Pantely, G.A., Arai, A.E., Grauer, S.E., and Bristow, J.D., Metabolic aspects of hibernating myocardium, Z. Kardiol., 1995, vol. 84, pp. 101–105.

    PubMed  Google Scholar 

  52. Tarasov, R.S., Vereshchagin, E.I., and Ganyukov, V.I., Methods of cardioprotection in myocardial infarction. A status quo, Kompl. Probl. Serd.-Sosud. Zabol., 2016, no. 4, pp. 44–50.

    Google Scholar 

  53. Hochachka, P.W., Metabolic arrest, Intensive Care Med., 1986, vol. 12, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  54. Yan, L., Kudej, R.K., Vatner, D.E., and Vatner, S.F., Myocardial ischemic protection in natural mammalian hibernation, Basic. Res. Cardiol., 2015, vol. 110, p.9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heyndrickx, G.R., Early reperfusion phenomena, Semin. Cardiothorac. Vasc. Anesth., 2006, vol. 10, pp. 236–241.

    Article  PubMed  Google Scholar 

  56. McFalls, E.O., Hou, M., Bache, R.J., Best, A., Marx, D., Sikora, J., and Ward, H.B., Activation of p38 MAPK and increased glucose transport in chronic hibernating swine myocardium, Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, pp. H1328–H1334.

    Article  CAS  PubMed  Google Scholar 

  57. Chereshnev, V.A., Klinicheskaya patofiziologiya (Clinical Pathophysiology), St. Petersburg, 2012.

    Google Scholar 

  58. Depre, C., Kim, S.J., John, A.S., Huang, Y., Rimoldi, O.E., Pepper, J.R., Dreyfus, G.D., Gaussin, V., Pennell, D.J., Vatner, D.E., Camici, P.G., and Vatner, S.F., Program of cell survival underlying human and experimental hibernating myocardium, Circ. Res., 2004, vol. 95, pp. 433–440.

    Article  CAS  PubMed  Google Scholar 

  59. Blagonravov, M.L., Apoptosis in cardiomyocytes as a typical reaction of the altered heart, Doctorate Sci. Diss., Moscow, 2011.

    Google Scholar 

  60. Masri, C. and Chandrashekhar, Y., Apoptosis: a potentially reversible, meta-stable state of the heart, Heart Fail. Rev., 2008, vol. 13, pp. 175–179.

    Article  PubMed  Google Scholar 

  61. Kremastinos, D.T., The phenomenon of preconditioning today, Hell. J. Cardiol., 2005, vol. 46, pp. 1–4.

    Google Scholar 

  62. Murry, C.E., Jennings, R.B., and Reimer, K.A., Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium, Circulation, 1986, vol. 74, pp. 1124–1136.

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Q., Li, Q.G., Fan, G.R., Liu, Q.H., Mi, F.L., and Liu, B., Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats, Braz. J. Med. Biol. Res., 2017, vol. 50, p. e5286.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shizukuda, Y., Mallet, R.T., Lee, S.C., and Downey, H.F., Hypoxic preconditioning of ischaemic canine myocardium, Cardiovasc. Res., 1992, vol. 26, pp. 534–542.

    Article  CAS  PubMed  Google Scholar 

  65. Jennings, R.B., Sebbag, L., Schwartz, L.M., Crago, M.S., and Reimer, K.A., Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection, J. Mol. Cell Cardiol., 2001, vol. 33, pp. 1571–1588.

    Article  CAS  PubMed  Google Scholar 

  66. Murry, C.E., Richard, V.J., Reimer, K.A., and Jennings, R.B., Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode, Circ. Res., 1990, vol. 66, pp. 913–931.

    Article  CAS  PubMed  Google Scholar 

  67. Downey, J.M., Davis, A.M., and Cohen, M.V., Signaling pathways in ischemic preconditioning, Heart Fail. Rev., 2007, vol. 12, pp. 181–188.

    Article  CAS  PubMed  Google Scholar 

  68. Likhvantsev, V.V., Moroz, V.V., Grebenchikov, O.A., Gorokhovatsky, Yu.I., Zarzhetsky, Yu.V., Timoshin, S.S., Levikov, D.I., and Shaibakova, V.L., Ischemic and pharmacological preconditioning, Obshch. Reanimat., 2011, vol. 7, no. 6, pp. 59–65.

    Google Scholar 

  69. Garlid, K.D., Dos Santos, P., Xie, Z.J., Costa, A.D., and Paucek, P., Mitochondrial potassium transport: the role of the mitochondrial ATPsensitive K+-channel in cardiac function and cardioprotection, Biochim. Biophys. Acta, 2003, vol. 1606, pp. 1–21.

    Article  CAS  PubMed  Google Scholar 

  70. Budas, G., Costa, H.M., Ferreira, J.C., Teixeira da Silva Ferreira, A., Perales, J., Krieger, J.E., Mochly-Rosen, D., and Schechtman, D., Identification of εPKC targets during cardiac ischemic injury, Circ. J., 2012, vol. 76, pp. 1476–1485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ping, P., Zhang, J., Zheng, Y.T., Li, R.C., Dawn, B., Tang, X.L., Takano, H., Balafanova, Z., and Bolli, R., Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits, Circ. Res., 1999, vol. 85, pp. 542–550.

    Article  CAS  PubMed  Google Scholar 

  72. Ma, L.L., Ge, H.W., Kong, F.J., Qian, L.B., Hu, B.C., Li, Q., Xu, L., Liu, J.Q., Xu, Y.X., and Sun, R.H., Ventricular hypertrophy abrogates intralipid-induced cardioprotection by alteration of reperfusion injury salvage kinase/glycogen synthase kinase 3β signal, Shock, 2014, vol. 41, pp. 435–442.

    Article  CAS  PubMed  Google Scholar 

  73. Juhaszova, M., Zorov, D.B., Kim, S.H., Pepe, S., Fu, Q., Fishbein, K.W., Ziman, B.D., Wang, S., Ytrehus, K., Antos, C.L., Olson, E.N., and Sollott, S.J., Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 2004, vol. 113, pp. 1535–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zorov, D.B., Juhaszova, M., Yaniv, Y., Nuss, H.B., Wang, S., and Sollott, S.J., Regulation and pharmacology of the mitochondrial permeability transition pore, Cardiovasc. Res., 2009, vol. 83, pp. 213–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kroemer, G., Dallaporta, B., and Resche-Rigon, M., The mitochondrial death/life regulator in apoptosis and necrosis, Annu Rev. Physiol., 1998, vol. 60, pp. 619–642.

    Article  CAS  PubMed  Google Scholar 

  76. Karch, J. and Molkentin, J.D., Regulated necrotic cell death: the passive aggressive side of Bax and Bak, Circ Res., 2015, vol. 116, pp. 1800–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E., Mitochondrial permeability transition and oxidative stress, FEBS Lett., 2001, vol. 495, pp. 12–15.

    Article  CAS  PubMed  Google Scholar 

  78. Grachev, D.E., The role of the peripheral benzodiazepine receptor at early stages of apoptosis and induction of the mitochondrial nonspecific pore, Candidate Sci. Diss., Pushchino, 2009.

    Google Scholar 

  79. Korotkov, S.M., Konovalova, S.A., Brailovskaya, I.V., and Saris, N.E., To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria, Toxicol. In Vitro, 2016, vol. 32, pp. 320–332.

    Article  CAS  PubMed  Google Scholar 

  80. Calmettes, G., Ribalet, B., John, S., Korge, P., Ping, P., and Weiss, J.N., Hexokinases and cardioprotection, J. Mol. Cell Cardiol., 2015, vol. 78, pp. 107–115.

    Article  CAS  PubMed  Google Scholar 

  81. Datler, C., Pazarentzos, E., Mahul-Mellier, A.L., Chaisaklert, W., Hwang, M.S., Osborne, F., and Grimm, S., CKMT1 regulates the mitochondrial permeability transition pore in a process that provides evidence for alternative forms of the complex, J. Cell Sci., 2014, vol. 127, pp. 1816–1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Halestrap, A.P. and Brenner, C., The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death, Curr. Med. Chem., 2003, vol. 10, pp. 1507–1525.

    Article  CAS  PubMed  Google Scholar 

  83. Crompton, M., The mitochondrial permeability transition pore and its role in cell death, Biochem. J., 1999, vol. 341, pp. 233–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baines, C.P., The molecular composition of the mitochondrial permeability transition pore, J. Mol. Cell. Cardiol., 2009, vol. 46, pp. 850–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Azarashvili, T., Odinokova, I., Bakunts, A., Ternovsky, V., Krestinina, O., Tyynel, J., and Saris, N.E., Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening, Cell Calcium, 2014, vol. 55, pp. 69–77.

    Article  CAS  PubMed  Google Scholar 

  86. Lebuffe, G., Schumacker, P.T., Shao, Z.H., Anderson, T., Iwase, H., and Vanden Hoek, T.L., ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, pp. H299–H308.

    Article  CAS  PubMed  Google Scholar 

  87. Tang, X.L., Takano, H., Rizvi, A., Turrens, J.F., Qiu, Y., Wu, W.J., Zhang, Q., and Bolli, R., Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits, Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 282, pp. H281–H291.

    Article  CAS  PubMed  Google Scholar 

  88. Green, D.R. and Reed, J.C., Mitochondria and apoptosis, Science, 1998, vol. 281, pp. 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  89. Borisov, L.Yu., Pharmacological myocardial preconditioning in surgeries with artificial blood circulation, Candidate Sci. Diss., Moscow, 2013.

    Google Scholar 

  90. Shemarova, I.V. and Nesterov, V.P., Role of Ca2+ and neurotransmitters of the sympathetic nervous system in transmission of stress signal in cardiomyocytes, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 2, pp. 97–104.

    CAS  PubMed  Google Scholar 

  91. Karpova, E.S., Ischemic preconditioning and its cardioprotective effect in cardiorehabilitation programs for patients with ischemic heart disease after transcutaneous coronary interventions, Ross. Kardiol. Zh., 2012, no. 4, pp. 104–108.

    Google Scholar 

  92. Hausenloy, D.J., Ong, S.B., and Yellon, D.M., The mitochondrial permeability transition pore as a target for preconditioning and postconditioning, Basic Res. Cardiol., 2009, vol. 104, pp. 189–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shemarova.

Additional information

Original Russian Text © I.V. Shemarova, V.P. Nesterov, S.M. Korotkov, Yu.A. Sylkin, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 1, pp. 9—19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemarova, I.V., Nesterov, V.P., Korotkov, S.M. et al. Evolutionary Aspects of Cardioprotection. J Evol Biochem Phys 54, 8–21 (2018). https://doi.org/10.1134/S0022093018010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018010027

Keywords

Navigation