Skip to main content
Log in

Coevolution of physiological systems

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Coevolution is the interaction in the process of evolution of different species that are closely related biologically but do not exchange genetic information. In this paper, we address the problem of coevolution of the whole organism’s physiological systems as a process of the interrelated development of structure and function as well as their regulatory systems during the formation of living organisms. We consider the coevolution of osmoregulation and the nitrogen metabolism type, systemic and individual coevolutionary strategies of cell volume regulation in poikiloosmotic and homoiosmotic animals, coevolution of effectory organs and endocrine factors in the development of water–salt homeostasis, co-involvement of neurohypophyseal nonapeptides and glucagon-like peptide-1 in the regulation of the renal function aimed at stabilizing physico-chemical parameters of extracellular fluids which make up the internal environment of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iordansky, N.N., Evolyutsiya zhizni (Evolution of Life), Moscow, 2001.

    Google Scholar 

  2. Dobrindt, U., Wullt, B., and Svanborg, C., Asymtomatic bacteriuria as a model to study the coevolution of hosts and bacteria, Pathogens, 2016, vol. 5, (1). doi 10.3390/pathogens5010021

  3. Orbeli, L.A., Osnovnye zadach i metody evolyutsionnoi fiziologii. Izbrannye Trudy (The Main Tasks and Methods of Evolutionary Physiology, Selected Works), Moscow, Leningrad, 1961, vol. 1, pp. 59–68.

    Google Scholar 

  4. Chaikovsky, Yu.V., Nauka o razvitii zhizni. Opyt teorii evolyutsii (The Science of Life Development. The Experience of Theory of Evolution), Moscow, 2006.

    Google Scholar 

  5. Kolchinsky, E.I., Edinstvo evolyutsionnoi teorii v razdelennom mire (Evolutionary Theory Unity in the XXth century’s Divided World), St. Petersburg, 2014.

    Google Scholar 

  6. Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Patterns of Evolution), Collected Works, vol. 5, Moscow, Leningrad, 1939.

  7. Severtsov, A.N., Teoriya evolyutsii (Theory of Evolution), Moscow, 2005.

    Google Scholar 

  8. Schmalhausen, I.I., Organizm kak edinoe tseloe v individual’nom i istoricheskom razvitii (Organism as a Whole in Individual and Historical Development), Selected Works, Moscow, 1982.

  9. Leibson, L.G., Leon Abgarovich Orbeli (Leon Abgarovich Orbeli), Leningrad, 1973.

    Google Scholar 

  10. Leibson, L.G., Akademik L.A. Orbeli: neopublikovannye glavy biografii (Academician L.A. Orbeli: Unpublished Biography), Leningrad, 1990.

    Google Scholar 

  11. Institut evolyutsionnoi fiziologii i biokhimii im. Sechenova Akademii nauk SSSR. Kratkii ocherk (Sechenov Institute of Evolutionary Physiology and Biochemistry USSR Academy of Sciences. Brief Profile), Svidersky, V.L., Ed., Leningrad, 1986.

  12. Slonim, A.D., Evolyutsiya termoregulyatsii (Evolution of Thermoregulation), Leningrad, 1986.

    Google Scholar 

  13. Tansey, E.A. and Johnson, C.D., Recent advances in thermoregulation, Adv. Physiol. Educ., 2015, vol. 39, no. 3, pp. 139–148.

    Article  PubMed  Google Scholar 

  14. Natochin, Yu.V., Problemy evolyutsionnoi fiziologii vodno-solevogo obmena (Problems of Evolutionary Physiology of Water–Salt Metabolism), Leningrad, 1984.

    Google Scholar 

  15. Evolyutsionnaya fiziologiya (Evolutionary Physiology), part 2, Kreps, E.M., Ed., Leningrad, 1983.

  16. Karamyan, A.I., Evolyutsiya konechnogo mozga pozvonochnykh (Evolution of Telencephalon in Vertebrates), Leningrad, 1976.

    Google Scholar 

  17. Fenton, R.A. and Knepper, M.A., Mouse models and the urinary concentrating mechanism in the new millennium, Physiol. Rev., 2007, vol. 87, pp. 1083–1112.

    Article  CAS  PubMed  Google Scholar 

  18. Sravnitel’naya fiziologiya zhivotnykh (Comparative Animal Physiology), vol. 1, Prosser, L., Ed., Moscow, 1977.

  19. Ginetsinsky, A.G., Fiziologicheskie mekhanizmy vodno-solevogo ravnovesiya (Physiological Mechanisms of Water–Salt Balance), Moscow, Leningrad, 1964.

    Google Scholar 

  20. Smith, H.W., From Fish to Philosopher, Boston, 1953.

    Google Scholar 

  21. McKinley, M.J., Yao, S.T., Uschakov, A., McAllen, R.M., Rundgren, M., and Martelli, D., The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis, Acta Physiol. (Oxf.). 2015, vol. 214, pp. 8–32.

    Article  CAS  PubMed  Google Scholar 

  22. Gilles, R., Mechanism of Osmoregulation in Animals. Maintenance of Cell Volume, Chichester, 1979.

    Google Scholar 

  23. Kahle, K.T., Khanna, A.R., Alper, S.L., Adragna, N.C., Lauf, P.K., Sun, D., and Delpire, E., K–Cl cotransporters, cell volume homeostasis, and neurological disease, Trends Mol. Med., 2015, vol. 21, pp. 513–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dantzler, W.H., Comparative Physiology of the Vertebrate Kidney, Berlin, Heidelberg, New York, 1989.

    Book  Google Scholar 

  25. Natochin, Yu.V. and Parnova, R.G., Osmolality and electrolyte concentration of hemolymph and the problem of ion and volume regulation of cells in higher insects, Comp. Biochem. Physiol. A, 1987, vol. 88, pp. 563–570.

    Article  Google Scholar 

  26. Bentley, P.J., Endocrines and Osmoregulation, Berlin, 2013.

    Google Scholar 

  27. Natochin, Yu.V., Glomerular filtration and proximal reabsorption in evolution of the kidney in vertebrates, Zh. Evol. Biokh. Fiziol., 1972, vol. 8, no. 3, pp. 289–297.

    CAS  Google Scholar 

  28. Leach Huntoon, C.S., Grigoriev, A.I., and Natochin, Yu.V., Fluid and Electrolyte Regulation in Spaceflight, San Diego, 1998.

    Google Scholar 

  29. Striedter, G.F., A history of ideas in evolutionary neuroscience. Evolution of nervous systems, A Comprehensive Reference, Striedter, G.F. and Rubenstein, J.R., Eds., Amsterdam, 2007, vol. 1, pp. 1–15.

    Google Scholar 

  30. Ugolev, A.M., Evolyutsiya pishchevareniya i printsipy evolyutsii funktsii: elementy sovremennogo funktsionalizma (Evolution of Digestion and the Principles of Evolution of the Functions: Elements of Modern Functionalism), Leningrad, 1985.

    Google Scholar 

  31. Dygalo, N.N., Evolyutsiya gormonov, neirotransmitterov, tkanevykh faktorov i ikh retseptorov (Evolution of Hormones, Neurotransmitters, Tissue Factors and Their Receptors), Novosibirsk, 2009.

    Google Scholar 

  32. Pais, R., Gribble, F.M., and Reimann, F., Stimulation of incretin secreting cells, Ther. Adv. Endocrinol. Metab., 2016, vol. 7, pp. 24–42.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kutina, A.V., Marina, A.S., Shakhmatova, E.I., and Natochin, Y.V., Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic, Clin. Exp. Pharmacol. Physiol., 2013, vol. 40, pp. 510–517.

    Article  CAS  PubMed  Google Scholar 

  34. Kutina, A.V., Marina, A.C., and Natochin, Yu.V., Effects of exenatide on glycemia and renal water and ion excretion differ in frogs and rats, Zh. Evol. Biokh. Fiziol., 2016, vol. 8, pp. 205–212.

    Google Scholar 

  35. Möllendorff, W.V., Der Exkretionsapparat, Handb. Mikrosk. Anat. des Menschen, vol. 7, Berlin, 1930, pp. 187–328.

    Google Scholar 

  36. Natochin, Yu.V., Marina, A.S., and Kutina, A.V., Redistribution of proximal and distal water and ion reabsorption in the rat kidney under the effect of glucagon-like peptide-1 mimetic, Byull. Eksp. Biol. Med., 2015, vol. 160, no. 7, pp. 13–16.

    Google Scholar 

  37. Hardy, R., Gomeostaz (Homeostasis), Moscow, 1986.

    Google Scholar 

  38. Bernard, C., Kurs obshchei fiziologii. Zhiznennye yavleniya, obshchie zhivotnym i rasteniyam (The Course of General Physiology. Living Phenomena Common to Animals and Plants), St. Petersburg, 1878.

    Google Scholar 

  39. Noble, D., Claude Bernard, the first systems biologist, and the future of physiology, Exp. Physiol., 2008, vol. 93, pp. 16–26.

    PubMed  Google Scholar 

  40. Cannon, W.B., Organization for physiological homeostasis, Physiol. Rev., 1929, vol. 9, pp. 399–431.

    Google Scholar 

  41. Barcroft, G., Osnovnye cherty arkhitektury fiziologicheskikh funktsyi (Features in the Architecture of Physiological Functions), Moscow, Leningrad, 1937.

    Google Scholar 

  42. Orbeli, L.A., Fiziologiya pochek (Physiology of the Kidneys), Selected Works, vol. 4, Moscow, Leningrad, 1966, pp. 85–106.

    Google Scholar 

  43. Pavlov, I.P., Izbrannye Trudy (Selected Works), Moscow, 1999.

    Google Scholar 

  44. Seliverstova, E.V., Burmakin, M.V., and Natochin, Yu.V., Renal clearance of absorbed intact GFP in the frog and rat intestine, Comp. Physiol. Biochem. A, 2007, vol. 147, pp. 1067–1073.

    Article  CAS  Google Scholar 

  45. Parker, M.D., Myers, E.J., and Schelling, J.R., Na+–H+ exchanger-1 (NHE1) regulation in kidney proximal tubule, Cell. Mol. Life Sci., 2015, vol. 72, pp. 2061–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Natochin, Yu.V. and Chernigovskaya, T.V., Evolutionary physiology: history, principles, Comp. Physiol. Biochem. A, 1997, vol. 118, pp. 63–79.

    Article  Google Scholar 

  47. Diamond, J., Evolutionary physiology. The Logic of Life, Boyd, C.A.R. and Noble, D., Eds., Oxford, 1993, pp. 89–111.

    Google Scholar 

  48. Darwin, C., Proiskhozhdenie vidov putem estestvennogo otbora (On the Origin of Species by Means of Natural Selection), St. Petersburg, 1991.

    Google Scholar 

  49. Haeckel, E., The basic law of organic development, Meuller, F. and Haeckel, E., Osnovnoi biogeneticheskyi zakon (The Basic Biogenetic Law), Selected Works, Moscow, Leningrad, 1940, pp. 169–186.

  50. Lucas, K., The evolution of animal function, Sci. Progr., 1909, vol. 3, pp. 472–483.

    Google Scholar 

  51. Koshtoyants, Kh.S., Evolutionary physiology in the USSR, Fiziol. Zh. SSSR, 1937, vol. 23, nos. 4/5, pp. 523–536.

    Google Scholar 

  52. Florken, M., Biokhimicheskaya evolyutsiya (Biochemical Evolution), Moscow, 1947.

    Google Scholar 

  53. Kreps, E.M., Morphophysiological evolution and biochemical evolution, Zh. Evol. Biokh. Fiziol., 1976, vol. 12, no. 6, pp. 493–502.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Natochin.

Additional information

Original Russian Text © Yu.V. Natochin, 2016, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2016, Vol. 52, No. 5, pp. 377—384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natochin, Y.V. Coevolution of physiological systems. J Evol Biochem Phys 52, 414–423 (2016). https://doi.org/10.1134/S0022093016050112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093016050112

Keywords

Navigation