Homocysteine-induced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons

  • P. A. Abushik
  • T. V. Karelina
  • D. A. Sibarov
  • Yu. D. Stepanenko
  • R. A. Giniatullin
  • S. M. Antonov
Comparative and Ontogenic Physiology


Homocysteine, a sulfur-containing amino acid, exerts neurotoxic effects and is involved in the pathogenesis of many neurodegenerative disorders. In contrast to well-studied glutamate excitotoxicity, the mechanism of homocysteine neurotoxicity is not clearly understood. Using wholecell patch-clamp, calcium imaging (fluo-3) and measurements of mitochondrial membrane potential (rhodamine 123), we studied in vitro in cultured rat cortical neurons transmembrane currents, calcium signals and changes in mitochondrial membrane potential induced by homocysteine versus responses induced by NMDA and glutamate. L-homocysteine (50 μM) induced inward currents that were completely blocked by the selective antagonist of NMDA receptors, AP-5. In contrast to NMDA-induced currents, homocysteine-induced currents exhibited a smaller steady-state amplitude. Comparison of calcium responses to homocysteine, NMDA or glutamate demonstrated that in all cortical neurons homocysteine elicited fast oscillatory-type calcium responses, whereas NMDA or glutamate induced a “classical” sustained elevation of intracellular calcium. In contrast to NMDA, homocysteine did not cause a drop in mitochondrial membrane potential at the early stages of its action. However, after its long-term effect, as in cases of NMDA and glutamate, changes in mitochondrial membrane potential arose comparable with its complete drop caused by protonophore FCCP-induced uncoupling of the respiratory chain. Our data suggest that in cultured rat cortical neurons homocysteine at the initial stages of its action induces in vitro neurotoxic effects due to the activation of NMDA-type ionotropic glutamate receptors followed by a massive calcium influx through the channels of these receptors. The long-term effect of homocysteine may lead to mitochondrial dysfuction manifested as a drop in mitochondrial membrane potential.

Key words

homocysteine glutamate calcium mitochondrial potential cortical neurons 



intracellular calcium concentration


mitochondrial membrane potential


carbonyl cyanide-p-trifluoromethoxyphenylhydrazone




rhodamine 123


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isobe, C. and Terayama, Y., A remarkable increase in total homocysteine concentrations in the CSF of migraine patients with aura, Headache, 2010, vol. 50, no. 10, pp. 1561–1569.CrossRefPubMedGoogle Scholar
  2. 2.
    Brattström, L. and Wilcken, D.E., Homocysteine and cardiovascular disease: cause or effect? Am. J. Clin. Nutr., 2000, vol. 72, no. 2, pp. 315–323.PubMedGoogle Scholar
  3. 3.
    Sachdev, P.S., Homocysteine and brain atrophy, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, vol. 29, no. 7, pp. 1152–1161.CrossRefPubMedGoogle Scholar
  4. 4.
    Boldyrev, A.A. and Johnson, P., Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s Disease, J. Alzheimer’s Dis., 2007, vol. 11, pp. 219–228.Google Scholar
  5. 5.
    Zoccolella, S., Bendotti, C., Beghi, E., and Logroscino, G., Homocysteine levels and amyotrophic lateral sclerosis: A possible link, Amyotroph. Lateral. Scler., 2010, vol. 11, no. 1–2, pp. 140–147.CrossRefPubMedGoogle Scholar
  6. 6.
    Lea, R., Colson, N., Quinlan, S., Macmillan, J., and Griffiths, L., The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability, Pharmacogenet. Genomics, 2009, vol. 19, no. 6, pp. 422–428.CrossRefPubMedGoogle Scholar
  7. 7.
    Oterino, A., Toriello, M., Valle, N., Castillo, J., Alonso-Arranz, A., Bravo, Y., Ruiz-Alegria, C., Quintela, E., and Pascual, J., The relationship between homocysteine and genes of folate–related enzymes in migraine patients, Headache, 2010, vol. 50, no. 1, pp. 99–168.CrossRefPubMedGoogle Scholar
  8. 8.
    Giniatullin, R.A., Neurophysiological mechanisms of migraine and new principles of pathogenetic treatment, Kazan. Med. Zh., 2011, vol. 92, no. 5, pp. 728–735.Google Scholar
  9. 9.
    Moskowitz, M.A., Genes, proteases, cortical spreading depression and migraine: impact on pathophysiology and treatment, Funct. Neurol., 2007, vol. 22, no. 3, pp. 133–136.PubMedGoogle Scholar
  10. 10.
    Pietrobon, D. and Moskowitz, M.A., Pathophysiology of migraine, Annu. Rev. Physiol., 2013, vol. 75, pp. 365–391.CrossRefPubMedGoogle Scholar
  11. 11.
    Chauvel, V., Vamos, E., Pardutz, A., Vecsei, L., Schoenen, J., and Multon, S., Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat, Exp. Neurol., 2012, vol. 236, no. 2, pp. 207–214.CrossRefPubMedGoogle Scholar
  12. 12.
    Lipton, S.A., Kim, W.K., Choi, Y.B., Kumar, S., D’Emilia, D.M., Rayuda, P.V., Arnelle, D.R., and Stamler, J.S., Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 11, pp. 5923–5928.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Ganapathy, P.S., White, R.E., Ha, Y., Bozard, B.R., McNeil, P.L., Caldwell, R.W., Kumar, S., Black, S.M., and Smith, S.B., The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells, Invest. Ophthalmol. Vis. Sci., 2011, vol. 52, no. 8, pp. 5515–5524.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Shi, Q., Savage, J.E., Hufeisen, S.J., Rauser, L., Grajkowska, E., Ernsberger, P., Wroblewski, J.T., Nadeau, J.H., and Roth, B.L., L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists, J. Pharmacol. Exp. Ther., 2003, vol. 305, no. 1, pp. 131–142.CrossRefPubMedGoogle Scholar
  15. 15.
    Yeganeh, F., Nikbakht, F., Bahmanpour, S., Rastegar, K., and Namavar, R., Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: in vivo study, J. Mol. Neurosci., 2013, vol. 50, no. 3, pp. 551–557.CrossRefPubMedGoogle Scholar
  16. 16.
    Abushik, P.A., Niittykoski, M., Giniatullina, R., Shakirzyanova, A., Bart, G., Fayuk, D., Sibarov, D.A., Antonov, S.M., and Giniatullin, R., The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells, J. Neurochem., 2014, vol. 129, no. 2, pp. 264–274.CrossRefPubMedGoogle Scholar
  17. 17.
    Poddar, R. and Paul, S., Novel crosstalk between ERK MAPK and p38 MAPK leads to homocysteine-NMDA receptor-mediated neuronal cell death, J. Neurochem., 2013, vol. 124, no. 4, pp. 558–570.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Tenneti, L., D’ Emilia, D.M., Troy, C.M., and Lipton, S.A., Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons, J. Neurochem., 1998, vol. 71, no. 3, pp. 946–959.CrossRefPubMedGoogle Scholar
  19. 19.
    Reyes, R.C., Brennan, A.M., Shen, Y., Baldwin, Y., and Swanson, R.A., Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes, J. Neurosci., 2012, vol. 32, no. 37, pp. 12973–12978.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Matte, C., Monteiro, S.C., Calcagnotto, T., Bavaresco, C.S., Netto, C.A., and Wyse, A.T., In vivo and in vitro effects of homocysteine on Na+,K+-ATPase activity in parietal, prefrontal and cingulate cortex of young rats, Int. J. Dev. Neurosci., 2004, vol. 22, no. 4, pp. 185–190.CrossRefPubMedGoogle Scholar
  21. 21.
    Outinen, P.A., Sood, S.K., Liaw, P.C.Y., Sarge, K.D., Maeda, N., Hirsh, J., Ribau, J., Podor, T.J., Weitz, J.I., and Austin, R.C., Characterization of the stress-inducing effects of homocysteine, Biochem. J., 1998, vol. 332, pt. 1, pp. 213–221.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Perna, A.F., Ingrosso, D., and De Santo, N.G., Homocysteine and oxidative stress, Amino Acids, 2003, vol. 25, no. 3–4, pp. 409–417.CrossRefPubMedGoogle Scholar
  23. 23.
    Loureiro, S.O., Romão, L., Alves, T., Fonseca, A., Heimfarth, L., Moura Neto, V., Wyse, A.T., and Pessoa–Pureur, R., Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes, Brain Res., 2010, no. 1355, pp. 151–164.CrossRefPubMedGoogle Scholar
  24. 24.
    Mironova, E.V., Lukina, A.A., Brovtsyna, N.B., Krivchenko, A.I., and Antonov, S.M., Types of glutamate receptors determining concentration dependence of its neurotoxic effect on the rat cortical neurons, Zh. Evol. Biokh. Fiziol., 2006, vol. 42, no. 6, pp. 559–566.Google Scholar
  25. 25.
    Antonov, S.M. and Johnson, J.W., Voltage-dependent interaction of open-channel blocking molecules with gating of NMDA receptors in rat cortical neurons, J. Physiol., 1996, vol. 493, pt. 2, pp. 425–445.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Antonov, S.M. and Johnson, J.W., Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 25, pp. 14571–14576.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 1985, vol. 260, no. 6, pp. 3440–3450.PubMedGoogle Scholar
  28. 28.
    Duchen, M.R., Mitochondria, calcium-dependent neuronal death and neurodegenerative disease, Pflügers Arch., 2012, vol. 464, no. 1, pp. 111–121.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch., 1981, vol. 391, no. 2, pp. 85–100.CrossRefPubMedGoogle Scholar
  30. 30.
    Han, E.B. and Stevens, C.F., Development regulates a switch between post-and presynaptic strengthening in response to activity deprivation, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 26, pp. 10817–10822.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Khodorov, B., Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurons, Progr. Biophys. Molec. Biol., 2004, vol. 86, no. 2, pp. 279–351.CrossRefGoogle Scholar
  32. 32.
    Abushik, P.A., Sibarov, D.A., Eaton, M.J., Skatchkov, S.N., and Antonov, S.M., Kainateinduced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain, Cell Calcium, 2013, vol. 54, no. 2, pp. 95–104.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Evstratova, A.A., Mironova, E.V., Dvoretskova, E.A., and Antonov, S.M., Apoptosis and receptor specificity of its mechanisms in neurotoxic effect of glutamate, Ross. Fiziol. Zh. im. I.M. Sechenova, 2008, vol. 94, no. 4, pp. 380–393.PubMedGoogle Scholar
  34. 34.
    Mironova, E.V., Evstratova, A.A., and Antonov, S.M., A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using the confocal microscopy on neurons in culture, J. Neurosci. Methods, 2007, vol. 163, no. 1, pp. 1–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Sibarov, D.A., Bolshakov, A.E., Abushik, P.A., Krivoi, I.I., and Antonov, S.M., Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress, J. Pharmacol. Exp. Ther., 2012, vol. 343, no. 3, pp. 596–607.CrossRefPubMedGoogle Scholar
  36. 36.
    Surtees, R., Bowron, A., and Leonard, J., Cerebrospinal fluid and plasma total homocysteine and related metabolites in children with cystathionine beta-synthase deficiency: the effect of treatment, Pediatr Res., 1997, vol. 42, no. 5, pp. 577–582.CrossRefPubMedGoogle Scholar
  37. 37.
    Bolton, A.D., Phillips, M.A., and Constantine-Paton, M., Homocysteine reduces NMDAR desensitization and differentially modulates peak amplitude of NMDAR currents, depending on GluN2 subunit composition, J. Neurophysiol., 2013, vol. 110, no. 7, pp. 1567–1582.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R., Glutamate receptor ion channels: structure, regulation and function, Pharmacol. Rev., 2010, vol. 62, no. 3, pp. 405–496.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Sibrian-Vazquez, M., Escobedo, J.O., Lim, S., Samoei, G.K., and Strongin, R.M., Homocystamides promote free-radical and oxidative damage to proteins, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 2, pp. 551–554.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Jara-Prado, A., Ortega-Vazquez, A., Martinez-Ruano, L., Rios, C., and Santamaria, A., Homocysteine–induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition, Neurotox. Res., 2003, vol. 5, no. 4, pp. 237–243.CrossRefPubMedGoogle Scholar
  41. 41.
    Lu, S.C., Regulation of glutathione synthesis, Mol. Aspects Med., 2009, vol. 30, no. 1–2, pp. 42–59.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. A. Abushik
    • 1
  • T. V. Karelina
    • 1
  • D. A. Sibarov
    • 1
  • Yu. D. Stepanenko
    • 1
  • R. A. Giniatullin
    • 2
    • 3
  • S. M. Antonov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Eastern FinlandKuopioFinland
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations