Skip to main content
Log in

Beta-adrenergic regulation of adenylyl cyclase signaling system in the myocardium and brain of rats with obesity and type 2 diabetes mellitus as affected by long-term intranasal insulin administration

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The stimulatory effects of norepinephrine, isoproterenol and selective ß3-adrenoceptor agonists BRL 37344 and CL 316.243 on the adenylyl cyclase signaling system (ACSS) in the brain and myocardium of young and mature rats with experimental obesity and type 2 diabetes mellitus (DM2) (disease induction at 2 and 4 months of age, respectively) and the influence of the long-term intranasal insulin (I-I) administration were studied. It was shown that the AC-stimulatory effects of ß-agonist isoproterenol in animals with obesity and DM2 practically did not change. The respective effects of norepinephrine on the AC activity slackened in the brain of young and mature rats and myocardium of mature rats, while the I-I treatment led to their partial recovery. In the brain and myocardium of mature rats with obesity and DM2 an increase in the AC-stimulatory effects of ß3- AR agonists was observed, while in young rats the similar influence of the same pathologies was mißsing. The I-I treatment resulted in an attenuation of the AC-stimulatory effects of ß3-agonists to their control level. Since the disruption of the adrenergic agonist-sensitive ACSS is one of the causes of metabolic syndrome and DM2, the recovery of ACSS dysfunctions by the long-term I-I administration offers one of the ways of correcting these diseases and their complications in the nervous and cardiovascular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dinçer, U.D., Bidasee, K.R., Güner, S., Tay, A., Ozçelikay, A.T., and Altan, V.M., The effect of diabetes on expression of beta1-, beta2-, and be-ta3-adrenoreceptors in rat hearts, Diabetes, 2001, vol. 50, pp. 455–461.

    Article  PubMed  Google Scholar 

  2. Huisamen, B., Marais, E., Genade, S., and Lochner, A., Serial changes in the myocardial beta-adrenergic signalling system in two models of noninsulin dependent diabetes mellitus, Mol. Cell. Biochem., 2001, vol. 219, pp. 73–82.

    Article  CAS  PubMed  Google Scholar 

  3. Skeberdis, V.A., Structure and function of beta3-adrenergic receptors, Medicina (Kaunas), 2004, vol. 40, pp. 407–413.

    Google Scholar 

  4. Shpakov, A.O., Alterations in hormonal signaling systems in diabetes mellitus: origin, causality and specificity, Endocrinology & Metabolic Syndrome, 2012, vol. 1, pp. 106–108.

    Article  Google Scholar 

  5. Gros, J., Manning, B.S., Pietri-Rouxel, F., Guillaume, J.L., Drumare, M.F., and Strosberg, A.D., Site-directed mutagenesis of the human beta3- adrenoceptor-transmembrane residues involved in ligand binding and signal transduction, Eur. J. Biochem., 1998, vol. 251, pp. 590–596.

    Article  CAS  PubMed  Google Scholar 

  6. Lenard, N.R., Prpic, V., Adamson, A.W., Rogers, R.C., and Gettys, T.W., Differential coupling of ß3A- and ß3B-adrenergic receptors to endogenous and chimeric Gαs and Gαi, Am. J. Physiol. Endocrinol. Metab., 2006, vol. 291, pp. E704–E715.

    Article  CAS  PubMed  Google Scholar 

  7. Seifert, R., Wenzel-Seifert, K., Arthur, J.M., Jose, P.O., and Kobilka, B.K., Efficient adenylyl cyclase activation by a ß2-adrenoreceptor-Giα2 fusion protein, Biochem. Biophys. Res. Commun., 2002, vol. 298, pp. 824–828.

    Article  CAS  PubMed  Google Scholar 

  8. Martin, N.P., Whalen, E.J., Zamah, M.A., Pierce, K.L., and Lefkowitz, R.J., PKA-mediated phosphorylation of the ß1-adrenergic receptor promotes Gs/Gi switching, Cell Signal., 2004, vol. 16, pp. 1397–1403.

    Article  CAS  PubMed  Google Scholar 

  9. Adigun, A.A., Wrench, N., Levin, E.D., Seidler, F.J., and Slotkin, T.A., Neonatal parathion exposure and interactions with a high-fat diet in adulthood: Adenylyl cyclase-mediated cell signaling in heart, liver and cerebellum, Brain Res. Bull., 2010, vol. 81, pp. 605–612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Matsumoto, T., Wakabayashi, K., Kobayashi, T., and Kamata, K., Functional changes in adenylyl cyclases and associated decreases in relaxation responses in mesenteric arteries from diabetic rats, Am. J. Physiol., 2005, vol. 289, pp. 2234–2243.

    Google Scholar 

  11. Shpakov, A.O. and Derkach, K.V., The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus, J. Signal Transduction, 2013, Article ID 594213, 16 pages.

    Google Scholar 

  12. Gando, S., Hattori, Y., Akaishi, Y., Nishihira, J., and Kanno, M., Impaired contractile response to beta adrenoreceptor stimulation in diabetic rat hearts: alterations in beta adrenoreceptors-G protein-adenylate cyclase system and phospholamban phosphorylation, J. Pharmacol. Exp. Ther., 1997, vol. 282, pp. 475–484.

    CAS  PubMed  Google Scholar 

  13. Woods, S.C., Seeley, R.J., Rushing, P.A., D’Alessio, D.D., and Tso, P., A controlled highfat diet induces an obese syndrome in rats, J. Nutr., 2003, vol. 133, pp. 1081–1087.

    CAS  PubMed  Google Scholar 

  14. Rozec, B. and Gauthier, C., ß3-adrenoceptors in the cardiovascular system: putative roles in human pathologies, Pharmacol. Ther., 2006, vol. 111, pp. 652–673.

    Article  CAS  PubMed  Google Scholar 

  15. Altan, V.M., Arioglu, E., Guner, S., and Ozcelikay, A.T., The influence of diabetes on cardiac beta-adrenoceptor subtypes, Heart Fail. Rev., 2007, vol. 12, pp. 58–65.

    Article  CAS  PubMed  Google Scholar 

  16. Masuo, K., Rakugi, H., Ogihara, T., Esler, M.D., and Lambert, G.W., Cardiovascular and renal complications of type 2 diabetes in obesity: role of sympathetic nerve activity and insulin resistance, Curr. Diabetes Rev., 2010, vol. 6, pp. 58–67.

    Article  CAS  PubMed  Google Scholar 

  17. Boyda, H.N., Procyshyn, R.M., Pang, C.C., and Barr, A.M., Peripheral adrenoceptors: the impetus behind glucose dysregulation and insulin resistance, J. Neuroendocrinol., 2013, vol. 25, pp. 217–228.

    Article  CAS  PubMed  Google Scholar 

  18. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Guryanov, I.A., and Pertseva, M.N., Molecular causes of alterations in the sensitivity of adenylyl cyclase signaling system in the heart muscle to biogenic amines under experimental streptozotocininduced diabetes mellitus, Tsitol., 2005, vol. 47 pp. 540–548.

    CAS  Google Scholar 

  19. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Alterations in the sensitivity of ACSS to biogenic amines and peptide hormones in the tissues of starving rats, Bull. Exper. Biol. Med., 2007, vol. 144, pp. 15–19.

    Google Scholar 

  20. Kuznetsova, L.A., Plesneva, S.A., Sharova, T.S., and Pertseva, M.N., A study of hormone reactivity of adenylyl cyclase signaling system in erythrocytes of patients with type 2 diabetes mellitus, Patol. Fiziol. Eksp. Terap., 2013, vol. 1, pp. 45–49.

    Google Scholar 

  21. Pertseva, M.N. and Shpakov, A.O., A concept of molecular defects in hormonal signaling systems as a cause of endocrine diseases, Sechenov Ross. Fiziol. Zh., 2004, vol. 90, pp. 446–447.

    Google Scholar 

  22. Pertseva, M.N. and Shpakov, A.O., A hypothesis of evolutionary origin of some diseases in humans and animals, Zh. Evol. Biokh. Fiziol., 2010, vol. 46, pp. 261–267.

    CAS  Google Scholar 

  23. Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C.L., and Ramarao, P., Combination of high-fat diet-fed and low-dose streptozotocin-induced rat: a model for type 2 diabetes and pharmacological screening, Pharmacol. Res., 2005, vol. 52, pp. 313–320.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, T., Pan, D.S., Zhao, B., Zhang, L.M., Huang, Y.L., and Sun, F.Y., Exacerbation of poststroke dementia by type 2 diabetes is associated with synergistic increases of ß-secretase activation and ß-amiloid generation in rat brains, Neuroscience, 2009, vol. 161, pp. 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  25. Dhuria, S.V., Hanson, L.R., and Frey, W.H., Intranasal delivery to the central nervous system: mechanisms and experimental considerations, J. Pharm. Sci., 2011, vol. 99, pp. 1654–1673.

    Google Scholar 

  26. Benedict, C., Brede, S., Schiöth, H.B., Lehnert, H., Schultes, B., Born, J., and Hallschmid, M., Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men, Diabetes, 2011, vol. 60, pp. 114–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ott, V., Benedict, C., Schultes, B., Born, J., and Hallschmid, M., Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism, Diabetes Obes. Metab., 2012, vol. 14, pp. 214–221.

    Article  CAS  PubMed  Google Scholar 

  28. Heni, M., Kullmann, S., Ketterer, C., Guthoff, M., Linder, K., Wagner, R., Stingl, K.T., Veit, R., Staiger, H., Hring, H.U., Preissl, H., and Fritsche, A., Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions, Diabetologia, 2012, vol. 55, pp. 1773–1782.

    Article  CAS  PubMed  Google Scholar 

  29. Gasparetti, A.L., Alvarez-Rojas, F., de Araujo, E.P., Hirata, A.E., Saad, M.J., and Velloso, L.A., ß3-adrenergic-dependent and independent mechanisms participate in cold-induced modulation of insulin signal transduction in brown adipose tissue of rats, Pflügers Arch., 2005, vol. 449, pp. 537–546.

    Article  CAS  PubMed  Google Scholar 

  30. Jost, P., Fasshauer, M., Kahn, C.R., Benito, M., Meyer, M., Ott, V., Lowell, B.B., Klein, H.H., and Klein, J., Atypical ß-adrenergic effects on insulin signaling and action in ß3-adrenoceptordeficit brown adipocytes, Am. J. Physiol., 2002, vol. 283, pp. 146–153.

    Google Scholar 

  31. Tully, K. and Bolshakov, V.Y., Emotional enhancement of memory: how norepinefrine enables synaptic plasticity, Molecular Brain, 2010, vol. 3, pp. 15–25.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Scheen, A.J., Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia, Diabetes Metabolism, 2010, vol. 36, pp. S31–S38.

    Article  CAS  PubMed  Google Scholar 

  33. Chavali, V., Tyagi, S.C., and Mishra, P.K., Predictors and prevention of diabetic cardiomyopathy, Diabetes, Metabolic Syndrome, Obesity, 2013, vol. 6, pp. 151–160.

    Google Scholar 

  34. Picchi, A., Capobianco, S., Qju, T., Focardi, M., Zou, X., Cao, J.M., and Zhang, C., Coronary microvascular disfunction in diabetes mellitus: a review, World J. Cardiology, 2010, vol. 2, pp. 377–390.

    Article  Google Scholar 

  35. Vicario, P.P., Candelore, M.R., Schaeffer, M.T., Kelly, L., Thompson, G.M., Brady, E.J., Saperstein, R., Mac Intyre, D.E., Tota, L.M., and Cascieri, M.A., Desensitization of beta3-adrenergic receptor-stimulated adenylyl cyclase activity and lipolysis in rats, Life Sci., 1998, vol. 162, pp. 627–638.

    Article  Google Scholar 

  36. Ren, C.J., Zhang, Y., Cui, W.Z., and Mu, Z.M., Progress in the role of oxidative stress in the pathogenesis of type 2 diabetes, Sheng Li Xue Bao., 2013, vol. 65, pp. 664–673.

    CAS  PubMed  Google Scholar 

  37. Soumaya, K., Molecular mechanisms of insulin resistance in diabetes, Adv. Exp. Med. Biol., 2012, vol. 771, pp. 240–251.

    PubMed  Google Scholar 

  38. Shpakov, A.O., Derkach, K.V., Moyseyuk, I.V., Chistyakova, O.V., and Bondareva, V.M., Hormonal sensitivity of adenylyl cyclase system in the myocardium, brain and testes of 18-month-old nondiabetic and diabetic rats, Int. J. Biochem. Res., 2013, vol. 3, pp. 1–20.

    Article  Google Scholar 

  39. Banyasz, T., Kalapos, I., Kelemen, S.Z., and Kovacs, T., Changes in cardiac contractility in IDDM and NIDDM diabetic rats, Gen. Physiol. Biophysics, 1996, vol. 15, pp. 357–369.

    CAS  Google Scholar 

  40. Mishra, P.K., Awe, O., Metreveli, N., Oipshidze, N., Joshua, I.G., and Tyagi, S.C., Exercise mitigates homocysteine-ß2-adrenergic receptor interactions to ameliorate contractile dysfunction in diabetes, Int. J. Physiol. Pathophysiol. Pharmacol., 2011, vol. 3, pp. 97–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Magnoni, M.S., Kobayashi, H., and Trezzi, E., ß-adrenergic receptors in brain microvessels of diabetic rats, Life Sciences, 1984, vol. 34, pp. 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  42. Shpakov, A.O., Derkach, K.V., Chistyakova, O.V., Sukhov, I. B., Shipilov, V.N., and Bondareva, V.M., The brain adenylyl cyclase signaling system and cognitive functions in rat with neonatal diabetes under the influence of intranasal serotonin, J. Metabolic Sindrome, 2012, vol. 1, http://dx.doi.org/10.4172/jms.1000104.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Original Russian Text © L. A. Kuznetsova, T.S. Sharova, M.N. Pertseva, A.O. Shpakov, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 3, pp. 170—180.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, L.A., Sharova, T.S., Pertseva, M.N. et al. Beta-adrenergic regulation of adenylyl cyclase signaling system in the myocardium and brain of rats with obesity and type 2 diabetes mellitus as affected by long-term intranasal insulin administration. J Evol Biochem Phys 51, 198–209 (2015). https://doi.org/10.1134/S0022093015030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015030040

Keywords

Navigation