“RNA World”, a highly improbable scenario of the origin and early evolution of life on earth

  • P. D. BregestovskiEmail author
Problem Papers


The most accepted and widespread contemporary scenario of prebiotic evolution that led to the emergence of the first cells on our planet is the “RNA World”, a hypothetical period of the early Earth’s biosphere when information transfer and all of the processes necessary for the functioning of prebiotic living systems were provided by RNA molecules. The “RNA World” hypothesis is based on two postulates. (1) At the initial stages of life, RNA molecules performed all the functions necessary for the reproduction of biological molecules: informational, catalytic and structural; (2) At a certain stage of evolution, there occurred a functional separation of RNA and DNA, emergence of genetically encoded proteins and transition to the modern world of living systems. However, the analysis shows that the “RNA World” hypothesis suffers from a number of insurmountable problems of chemical and informational nature. The biggest of them are: (a) unreliability of the synthesis of starting components; (b) catastrophically increasing instability of the polynucleotide molecules as they elongate; (c) exceedingly low probability of meaningful sequences; (d) lack of the mechanism that would generate membrane-bound vesicles able to divide regularly and permeable to the nitrogenous bases and other RNA components; (e) absence of driving forces for the transition from the “RNA world” to the much more complex “DNA-RNA world”. Therefore, the “RNA World” scenario is highly improbable.

Key words

origin of life protocells ribozymes prebiotic evolution hypercycles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernal, G., Vozniknovenie Zhizni (The Origin of Life), Moscow, 1969.Google Scholar
  2. 2.
    Folsome, C., Vozniknovenie Zhizni. Malen’kii Teplyi Vodoem (The Origin of Life. A Warm Little Pond), Moscow, 1982.Google Scholar
  3. 3.
    Ponnamperuma, C., Proiskhozhdenie Zhizni (The Origins of Life), Moscow, 1977.Google Scholar
  4. 4.
    Cowen, R., Istoriya Zhizni (History of Life), Kiev, 1982.Google Scholar
  5. 5.
    Darwin, Ch., O Proiskhozhenii Vidov Putem Estestvennogo Otbora (On the Origin of Species by Means of Natural Selection), Moscow, 1952.Google Scholar
  6. 6.
    Wells, J., Icons of Evolution. Science or Myth, Chicago, 2001.Google Scholar
  7. 7.
    Chaikovskii, Y.V., Evolyutsiya (Evolution), Moscow, 2003.Google Scholar
  8. 8.
    Nazarov, V.I., Evolyutsiya ne po Darvinu: Smena Evolyutsionnoi Modeli (Non-Darwinian Evolution: A Change of the Evolutionary Model), Moscow, 2005.Google Scholar
  9. 9.
    Chaikovskii, Y.V., Nauka o Razvitii Zhizni. Opyt Teorii Evolyutsii (Life Evolution Science. Experience of the Evolutionary Theory), Moscow, 2006.Google Scholar
  10. 10.
    Johnson, P.E., Darwin on Trial, InterVarsity Press, 2010.Google Scholar
  11. 11.
    Oparin, A.I., Proiskhozhdenie Zhizni (The Origin of Life), Moscow, 1924.Google Scholar
  12. 12.
    Oparin, A.I., Vozniknovenie Zhizni na Zemle (The Origin of Life on Earth), Moscow, 1941.Google Scholar
  13. 13.
    Oparin, A.I., The Origin of Life on Earth, 3rd edition, Oliver and Boyd, 1957.Google Scholar
  14. 14.
    Oparin, A.I., Zhizn’, Ee Priroda, Proiskhozhdenie i Razvitie (Life, Its Nature, Origin and Evolution), Moscow, 1968.Google Scholar
  15. 15.
    Miller, S., A production of amino acids under possible primitive Earth conditions, Science, 1953, vol. 117, pp. 528–529.CrossRefPubMedGoogle Scholar
  16. 16.
    Oro, J., Synthesis of adenine from ammonium cyanide, Biochem. Biophys. Res. Commun., 1960, vol. 2, pp. 407–412.CrossRefGoogle Scholar
  17. 17.
    Oro, J. and Kimball, A.P., Synthesis of purines under primitive Earth conditions. I. Adenine from hydrogen cyanide, Arch. Biochem. Biophys., 1961, vol. 94, pp. 221–227.CrossRefGoogle Scholar
  18. 18.
    Oro, J. and Kimball, A.P., Synthesis of purines under possible primitive Earth conditions. II. Purine intermediates from hydrogen cyanide, Arch. Biochem. Biophys., 1962, vol. 96, pp. 293–313.CrossRefPubMedGoogle Scholar
  19. 19.
    Woese, C.R., The Genetic Code: The Molecular Basis for Gene Expression, Harper and Row, New York, 1967.Google Scholar
  20. 20.
    Crick, F.H.C., The origin of the genetic code, J. Mol. Biol., 1968, vol. 38, pp. 367–379.CrossRefPubMedGoogle Scholar
  21. 21.
    Orgel, L.E., Evolution of the genetic apparatus, J. Mol. Biol., 1968, vol. 38, pp. 381–393.CrossRefPubMedGoogle Scholar
  22. 22.
    Doudna, J.A. and Cech, T.R., The chemical repertoire of natural ribozymes, Nature, 2002, vol. 418, pp. 222–228.CrossRefPubMedGoogle Scholar
  23. 23.
    Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R., Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 1982, vol. 31, pp. 147–157.CrossRefPubMedGoogle Scholar
  24. 24.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S., The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell, 1983, vol. 35, pp. 849–857.CrossRefPubMedGoogle Scholar
  25. 25.
    Gilbert, W., Origin of life: The RNA world, Nature, 1986, vol. 319, p. 618.CrossRefGoogle Scholar
  26. 26.
    Pley, H.W., Flaherty, K.M., and McKay, D.B., Three-dimensional structure of a hammerhead ribozyme, Nature, 1994, vol. 372, pp. 68–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Joyce, G.F., Building the RNA world. Ribozymes, Curr. Biol., 1996, vol. 6, pp. 965–967.CrossRefPubMedGoogle Scholar
  28. 28.
    Joyce, G.F., The antiquity of RNA-based evolution, Nature, 2002, vol. 418, pp. 214–221.CrossRefPubMedGoogle Scholar
  29. 29.
    Joyce, G.F., Evolution in an RNA world, Cold Spring Harb. Symp. Quant. Biol., 2009, vol. 74, pp. 17–23.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Spirin, A.S., Biosynthesis of proteins, the RNA world and the origin of life, Vestnik RAN, 2001, vol. 71, pp. 320–328.Google Scholar
  31. 31.
    Spirin, A.S., Ribonucleic acids as a core of living matter, Vestnik RAN, 2003, vol. 73, pp. 117–127.Google Scholar
  32. 32.
    Robertson, M.P. and Joyce, G.F., The origins of the RNA world, Cold Spring Harb. Perspect. Biol., 2012, May 1, 4(5), pii: a003608. doi: 10.1101/cshperspect. a003608.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Bartel, D.P. and Unrau, P.J., Constructing an RNA world, Trends Cell Biol., 1999, vol. 9, pp. 9–13.CrossRefGoogle Scholar
  34. 34.
    Nielsen, P.E., Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig. Life Evol. Biosph., 1993, vol. 23, pp. 323–327.CrossRefPubMedGoogle Scholar
  35. 35.
    Anastasi, C., Buchet, F.F., Crowe, M.A., Parkes, A.L., Powner, M.W., Smith, J.M., and Sutherland, J.D., RNA: prebiotic product, or biotic invention? Chem. Biodivers., 2007, vol. 4, pp. 721–739.CrossRefPubMedGoogle Scholar
  36. 36.
    Sutherland, J., Looking beyond the RNA structural neighborhood for potentially primordial genetic systems, Angewandte Chemie (International Ed.), 2007, vol. 46, pp. 2354–2356.CrossRefGoogle Scholar
  37. 37.
    Robertson, D.L. and Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 1990, vol. 344, pp. 467–468.CrossRefPubMedGoogle Scholar
  38. 38.
    Beaudry, A.A. and Joyce, G.F., Directed evolution of an RNA enzyme, Science, 1992, vol. 257, pp. 635–641.CrossRefPubMedGoogle Scholar
  39. 39.
    Wright, M.C. and Joyce, G.F., Continuous in vitro evolution of catalytic function, Science, 1997, vol. 276, pp. 614–617.CrossRefPubMedGoogle Scholar
  40. 40.
    Joyce, G.F., Inoue, T., and Orgel, L.E., Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, U) templates, J. Mol. Biol., 1984, vol. 176(2), pp. 279–306.CrossRefPubMedGoogle Scholar
  41. 41.
    Joyce, G.F. and Orgel, L.E., Non-enzymic template-directed synthesis on RNA random copolymers. Poly (C, G) templates, J. Mol. Biol., 1986, vol. 188, pp. 433–441.CrossRefPubMedGoogle Scholar
  42. 42.
    Joyce, G.F. and Orgel, L.E., Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, A) templates, J. Mol. Biol., 1988, vol. 202, pp. 677–681.CrossRefPubMedGoogle Scholar
  43. 43.
    Unrau, P.J. and Bartel, D.P., RNA-catalysed nucleotide synthesis, Nature, 1998, vol. 395, pp. 260–263.CrossRefPubMedGoogle Scholar
  44. 44.
    Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P., RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension, Science, 2001, vol. 292, pp. 1319–1325.CrossRefPubMedGoogle Scholar
  45. 45.
    Lee, N., Bessho, Y., Wei, K., Szostak, J. W., and Suga, H., Ribozyme-catalyzed tRNA aminoacylation, Nature Struct. Biol., 2000, vol. 7, pp. 28–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, B. and Cech, T.R., Peptide bond formation by in vitro selected ribozymes, Nature, 1997, vol. 390, pp. 96–100.CrossRefPubMedGoogle Scholar
  47. 47.
    Eigen, M. and Schuster, P., Stages of emerging life-five principles of early organization, J. Mol. Evol., 1982, vol. 19, pp. 47–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Shapiro, R., Prebiotic ribose synthesis: a critical analysis, Orig. Life Evol. Biosph., 1988, vol.18, pp. 71–85.CrossRefPubMedGoogle Scholar
  49. 49.
    Larralde, R., Robertson, M.P., and Miller, S.L., Rates of decomposition of ribose and other sugars: implications for chemical evolution, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8158–8160.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Ricardo, A., Carrigan, M.A., Olcott, A.N., and Benner, S.A., Borate minerals stabilize ribose, Science, 2004, vol. 303, p. 196.CrossRefPubMedGoogle Scholar
  51. 51.
    Orgel, L.E., Prebiotic chemistry and the origin of the RNA world, Crit. Rev. Biochem. Mol. Biol., 2004, vol. 39, pp. 99–123.CrossRefPubMedGoogle Scholar
  52. 52.
    Kim, H.J., Ricardo, A., Illangkoon, H.I., Kim, M.J., Carrigan, M.A., Frye, F., and Benner, S.A., Synthesis of carbohydrates in mineral-guided prebiotic cycles, J. Am. Chem. Soc., 2011, vol. 133, pp. 9457–9468.CrossRefPubMedGoogle Scholar
  53. 53.
    Furukawa, Y., Horiuchi, M., and Kakegawa, T., Selective stabilization of ribose by borate, Orig. Life Evol. Biosph., 2013, vol. 43(4–5), pp. 353–361, doi: 10.1007/s11084-013-9350-5.CrossRefPubMedGoogle Scholar
  54. 54.
    Yuasa, S., Flory, D., Basile, B., and Oró, J., Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges, J. Mol. Evol., 1984, vol. 21, pp. 76–80.CrossRefPubMedGoogle Scholar
  55. 55.
    Robertson, M.P. and Miller, S.L., An efficient prebiotic synthesis of cytosine and uracil, Nature, 1995, vol. 375, pp. 772–774.CrossRefPubMedGoogle Scholar
  56. 56.
    Shapiro, R., Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4396–4401.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Nelson, K.E., Robertson, M.P., Levy, M., and Miller, S.L., Concentration by evaporation and the prebiotic synthesis of cytosine, Orig. Life Evol. Biosph., 2001, vol. 31 pp. 221–229.CrossRefPubMedGoogle Scholar
  58. 58.
    Shapiro, R., Comments on ‘concentration by evaporation and the prebiotic synthesis of cytosine’, Orig. Life Evol. Biosph., 2002, vol. 32, pp. 275–278.CrossRefPubMedGoogle Scholar
  59. 59.
    Nielsen, P.E. and Egholm, M., An introduction to peptide nucleic acid, Curr. Issues Mol. Biol., 1999, vol. 1, pp. 89–104.PubMedGoogle Scholar
  60. 60.
    Shakeel, S., Peptide nucleic acid (PNA)-a review, J. Chem. Technol. Biotechnol., 2006, vol. 81, pp. 892–899.CrossRefGoogle Scholar
  61. 61.
    Monnard, P.A., Question 5: does the RNA world still retain its appeal after 40 years of research? Orig. Life Evol. Biosph., 2007, vol. 37, pp. 387–390.CrossRefPubMedGoogle Scholar
  62. 62.
    Powner, M.W., Gerland, B. and Sutherland, J.D., Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, 2009, vol. 459, pp. 239–242.CrossRefPubMedGoogle Scholar
  63. 63.
    Andrade, M.A., Nuño, J.C., Morán, F., Montero, F., and Mpitsos, G.J., Complex dynamics of a catalytic network having faulty replication into error-species, Physica D, 1993, vol. 63, pp. 21–40.CrossRefGoogle Scholar
  64. 64.
    Blomberg, C., The role of accuracy for early stages of the origin of life, Orig. Life Evol. Biosph., 1995, vol. 25, pp. 219–226.CrossRefPubMedGoogle Scholar
  65. 65.
    Cronhjort, M. and Blomberg, C., Cluster compartmentalization may provide resistance to parasites for catalytic networks, Physica D, 1996, vol. 101, pp. 289–298.CrossRefGoogle Scholar
  66. 66.
    Eigen, M. and Schster, P., Gipertsikl. Printsipy Samoorganizatsii Makromolekul (Hypercycle. Principles of Self-Organization of Macromolecules), Moscow, 1982.Google Scholar
  67. 67.
    Eigen, M., Biebricher, C.K., Gebinoga, M., and Gardiner, W.C., The hypercycle. Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage, Biochemistry, 1991, vol. 30, pp. 11005–11018.CrossRefPubMedGoogle Scholar
  68. 68.
    Biebricher, C.K. and Eigen, M., What is a quasispecies? Curr. Top. Microbiol. Immunol., 2006, vol. 299, pp. 1–31.PubMedGoogle Scholar
  69. 69.
    Ishihama, A. and Barbier, P., Molecular anatomy of viral RNA-directed RNA polymerases, Arch. Virol., 1994, vol. 134, pp. 235–258.CrossRefPubMedGoogle Scholar
  70. 70.
    Ninio, J., Errors and alternatives in prebiotic replication and catalysis, Chem. Biodivers., 2007, vol. 4, pp. 622–632.CrossRefPubMedGoogle Scholar
  71. 71.
    Eigen, M., Selforganization of matter and the evolution of biological macromolecules, Naturwissenschaften, 1971, vol. 58, pp. 465–523.CrossRefPubMedGoogle Scholar
  72. 72.
    Kauffman, S.A., The Origins of Order, Oxford University Press, 1993.Google Scholar
  73. 73.
    Eigen, M. and Schuster, P., The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle, Naturwissenschaften, 1977, vol. 64, pp. 541–565.CrossRefPubMedGoogle Scholar
  74. 74.
    Luisi, P.L., Ferri, F., and Stano, P., Approaches to semi-synthetic minimal cells: a review, Naturwissenschaften, 2006, vol. 93, pp. 1–13.CrossRefPubMedGoogle Scholar
  75. 75.
    Crick, F., Central dogma of molecular biology, Nature, 1970, vol. 227, pp. 561–563.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Brain Dynamics InstituteAix-Marseille UniversityMarseilleFrance

Personalised recommendations