Skip to main content
Log in

Morphofunctional changes in field CA1 of the rat hippocampus after pentylenetetrazole and lithium-pilocarpine induced seizures

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Animal models of seizures and epilepsy are very diverse and instrumental for elucidating the mechanisms that underlie convulsive states and epileptogenesis. A single injection of pentylenetetrazole (PTZ) induces seizures, however, does not raise the risk of further development of epilepsy. Pilocarpine, immediately after injection, evokes epileptical state and, following a latent period, results in the development of spontaneous seizures, i.e. the drug triggers epileptogenesis. Assuming that in the PTZ model morphofunctional changes are mainly transient, while changes in the lithium-pilocarpine (PC) model may indicate the brain epileptization, we set ourselves the task of comparing morphological and functional characteristics of the hippocampal field CA1 in control and two experimental animal groups in 24 h after injection of the convulsants. We revealed the changes specific to the PC model and indicating neurodegeneration: a decrease in the cell spacing density, a diminution in the number of the viable NeuN-expressing neurons, an increased activity of the proapoptotic protease caspase-3. A characteristic feature of the PTZ model was the appearance of hyperchromic neurons with normal viability. In both models, the expression of the excitatory amino acid carrier EAAT1 increased by about 40% as compared to control. These morphofucntional correlates of reversible changes in the nervous tissue caused by seizures, as well as the early disorders leading to long-term brain epileptization can be used as indicators allowing assessment of a therapeutic potential of novel anticonvulsive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bialer, M. and White, H.S., Key factors in the discovery and development of new antiepileptic drugs, Nat. Rev. Drug Discov., 2010, vol. 9, pp. 68–82.

    Article  CAS  PubMed  Google Scholar 

  2. Loscher, W., Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs, Seizure, 2011, vol. 20, pp. 359–368.

    Article  PubMed  Google Scholar 

  3. Lukomskaya, N.Ia., Vataev, S.I., Zhabko, E.P., and Magazanik, L.G., Effects of ionotropic glutamate receptor channel blockers on the development of audiogenic seizures in Krushinski-Molodkina rats, Ross. Fiziol. Zhurn. im. Sechenova, 2012, vol. 98, pp. 449–460.

    Google Scholar 

  4. Lukomskaya, N.Ia., Rukoiatkina, N.I., Gorbunova, L.V., Gmiro, V.E., Bol’shakov, K.V., and Magazanik, L.G., Comparison of the anticonvulsant activity of organic mono- and di-cations and their potential to inhibit NMDA and AMPA glutamate receptors, Ross. Fiziol. Zh. im. Sechenova, 2002, vol. 88, pp. 1161–1171.

    CAS  Google Scholar 

  5. Lukomskaya, N.Ia., Rukoiatkina, N.I., Gorbunova, L.V., Gmiro, V.E., and Magazanik, L.G., Role of NMDA and AMPA glutamate receptors in the mechanism of corazol-induced convulsions in mice, Ross. Fiziol. Zh. im. Sechenova, 2003, vol. 89, pp. 292–301.

    Google Scholar 

  6. Erdogan, F., Golgeli, A., Arman, F., and Ersoy, A.O., The effects of pentylenetetrazole-induced status epilepticus on behavior, emotional memory, and learning in rats, Epilepsy Behav., 2004, vol. 5, pp. 388–393.

    Article  PubMed  Google Scholar 

  7. Aniol, V.A., Stepanichev, M.Y., Lazareva, N.A., and Gulyaeva, N.V., An early decrease in cell proliferation after pentylenetetrazole-induced seizures, Epilepsy Behav., 2011, vol. 22, pp. 433–441.

    Article  CAS  PubMed  Google Scholar 

  8. Curia, G., Longo, D., Biagini, G., Jones, R.S., and Avoli, M., The pilocarpine model of temporal lobe epilepsy, J. Neurosci. Methods, 2008, vol. 172, pp. 143–157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Engel, J., Jr., Pitkanen, A., Loeb, J.A., Dudek, F.E., Bertram, E.H., 3rd, Cole, A.J., Moshe, S.L., Wiebe, S., Jensen, F.E., Mody, I., Nehlig, A., and Vezzani, A., Epilepsy biomarkers, Epilepsia, 2013, vol. 54,suppl. 4, pp. 61–69.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Racine, R.J., Modification of seizure activity by electrical stimulation. II. Motor seizure, EEG Clin. Neurophysiol., 1972, vol. 32, pp. 281–294.

    Article  CAS  Google Scholar 

  11. Kim, K.Kh., Zaitsev, A.V., Lavrent’eva, V.V., Zhabko, E.P., Vataev, S.I., Lukomskaya, N.Ia., and Magazanik, L.G., The effect of ionotropic glutamate receptor antagonist on pentylenetetrazole-induced seizures in Krushinsky-Molodkina rats, Ross. Fiziol. Zh. im. Sechenova, 2012, vol. 98, pp. 1520–1529.

    CAS  Google Scholar 

  12. Mullen, R.J., Buck, C.R., and Smith, A.M., NeuN, a neuronal specific nuclear protein in vertebrates, Development, 1992, vol. 116, pp. 201–211.

    CAS  PubMed  Google Scholar 

  13. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  14. Lavezzi, A.M., Corna, M.F., and Matturri, L., Neuronal nuclear antigen (NeuN): a useful marker of neuronal immaturity in sudden unexplained perinatal death, J. Neurol. Sci., 2013, vol. 329, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  15. Meurs, A., Clinckers, R., Ebinger, G., Michotte, Y., and Smolders, I., Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin, Epilepsy Res., 2008, vol. 78, pp. 50–59.

    Article  CAS  PubMed  Google Scholar 

  16. Szyndler, J., Maciejak, P., Turzynska, D., Sobolewska, A., Lehner, M., Taracha, E., Walkowiak, J., Skorzewska, A., Wislowska-Stanek, A., Hamed, A., Bidzinski, A., and Plaznik, A., Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats, Neurosci. Lett., 2008, vol. 439, pp. 245–249.

    Article  CAS  PubMed  Google Scholar 

  17. Smolders, I., Khan, G.M., Manil, J., Ebinger, G., and Michotte, Y., NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis, Br. J. Pharmacol., 1997, vol. 121, pp. 1171–1179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sheldon, A.L. and Robinson, M.B., The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention, Neurochem. Int., 2007, vol. 51, pp. 333–355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Duan, S., Anderson, C.M., Stein, B.A., and Swanson, R.A., Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST, J. Neurosci., 1999, vol. 19, pp. 10 193–10 200.

    CAS  Google Scholar 

  20. Loscher, W., Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy, Epilepsy Res., 2002, vol. 50, pp. 105–123.

    Article  CAS  PubMed  Google Scholar 

  21. Planas, A.M., Soriano, M.A., Ferrer, I., and Rodriguez Farre, E., Regional expression of inducible heat shock protein-70 mRNA in the rat brain following administration of convulsant drugs, Brain Res. Mol. Brain Res., 1994, vol. 27, pp. 127–137.

    Article  CAS  PubMed  Google Scholar 

  22. Fujikawa, D.G., The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus, Brain Res., 1996, vol. 725, pp. 11–22.

    Article  CAS  PubMed  Google Scholar 

  23. Luttjohann, A., Fabene, P.F., and van Luijtelaar, G., A revised racine’s scale for PTZ-induced seizures in rats, Physiol. Behav., 2009, vol. 98, pp. 579–586.

    Article  PubMed  Google Scholar 

  24. D’Amelio, M., Sheng, M., and Cecconi, F., Caspase-3 in the central nervous system: beyond apoptosis, Trends Neurosci., 2012, vol. 35, pp. 700–709.

    Article  PubMed  Google Scholar 

  25. Sloviter, R.S., “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies, Brain Res. Bull., 1983, vol. 10, pp. 675–697.

    Article  CAS  PubMed  Google Scholar 

  26. Soderfeldt, B., Kalimo, H., Olsson, Y., and Siesjo, B.K., Bicuculline-induced epileptic brain injury. Transient and persistent cell changes in rat cerebral cortex in the early recovery period, Acta Neuropathol., 1983, vol. 62, pp. 87–95.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmed, M.M., Arif, M., Chikuma, T., and Kato, T., Pentylenetetrazol-induced seizures affect the levels of prolyl oligopeptidase, thimet oligopeptidase and glial proteins in rat brain regions, and attenuation by MK-801 pretreatment, Neurochem. Int., 2005, vol. 47, pp. 248–259.

    Article  CAS  PubMed  Google Scholar 

  28. Vasil’ev, D.S., Tumanova, N.L., Lavrent’eva, V.V., Starshinova, L.A., Zhabko, E.P., Lukomskaya, N. Ia., Zhuravin, I.A., and Magazanik, L.G., The ability of NMDA glutamate receptor blockers to prevent a pentylenetetrazole kindling in mice and morphological changes in the hippocampus, Ross. Fiziol. Zhurn. im. Sechenova, 2012, vol. 99, pp. 1023–1034.

    Google Scholar 

  29. Auer, R.N., Kalimo, H., Olsson, Y., and Siesjo, B.K., The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex, Acta Neuropathol., 1985, vol. 67, pp. 13–24.

    Article  CAS  PubMed  Google Scholar 

  30. Csordas, A., Mazlo, M., and Gallyas, F., Recovery versus death of “dark” (compacted) neurons in non-impaired parenchymal environment: light and electron microscopic observations, Acta Neuropathol., 2003, vol. 106, pp. 37–49.

    CAS  PubMed  Google Scholar 

  31. Kherani, Z.S. and Auer, R.N., Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex, Acta Neuropathol., 2008, vol. 116, pp. 447–452.

    Article  PubMed  Google Scholar 

  32. Kanamori, K. and Ross, B.D., Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain, Brain Res., 2011, vol. 1371, pp. 180–191.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, R.Q., Bell-Horner, C.L., Dibas, M.I., Covey, D.F., Drewe, J.A., and Dillon, G.H., Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action, J. Pharmacol. Exp. Ther., 2001, vol. 298, pp. 986–995.

    CAS  PubMed  Google Scholar 

  34. Doi, T., Ueda, Y., Nagatomo, K., and Willmore, L.J., Role of glutamate and GABA transporters in development of pentylenetetrazol-kindling, Neurochem. Res., 2009, vol. 34, pp. 1324–1331.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Original Russian Text © D.S. Vasil’ev, N.L. Tumanova, I.A. Zhuravin, K.Kh. Kim, N.Ya. Lukomskaya, L.G. Magazanik, A.V. Zaitsev, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 6, pp. 463–469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, D.S., Tumanova, N.L., Zhuravin, I.A. et al. Morphofunctional changes in field CA1 of the rat hippocampus after pentylenetetrazole and lithium-pilocarpine induced seizures. J Evol Biochem Phys 50, 531–538 (2014). https://doi.org/10.1134/S0022093014060088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014060088

Key words

Navigation