Skip to main content
Log in

Properties of spontaneous and miniature excitatory postsynaptic currents in neurons of the rat prefrontal cortex

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Quantum analysis of postsynaptic currents is important for fundamental and applied studies of synaptic transmission and plasticity. In the present work, we investigated the possibility of using the characteristics of spontaneous excitatory postsynaptic currents (EPSCs) for estimation of quantum parameters of excitatory synaptic transmission in different types of neurons from rat prefrontal cortex slices. By blocking spontaneous spiking activity in slices by tetrodotoxin, we showed that spontaneous and miniature EPSCs in the prefrontal cortex neurons did not differ in their properties. Therefore, both spontaneous and miniature responses can be used for estimation of quantum parameters of excitatory synaptic transmission in this preparation. We also revealed that excitatory spontaneous responses of pyramidal cells were two times lower by amplitude, had a twice lower coefficient of variation and exhibited much slower kinetics than responses of the fast-spiking and regular-spiking interneurons. Possible mechanisms of these differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, B. and Miledi, R., Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol., 1969, vol. 203, pp. 459–487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Simkus, C.R. and Stricker, C., Properties of mEPSCs recorded in layer II neurones of rat barrel cortex, J. Physiol., 2002, vol. 545, pp. 509–520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pernia-Andrade, A.J., Goswami, S.P., Stickler, Y., Frobe, U., Schlogl, A., and Jonas, P., A Deconvolution-based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo, Biophys. J., 2012, vol. 103, pp. 1429–1439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fuster, J.M., The Prefrontal Cortex, London, Burlington, San Diego: Academic, 2008.

    Google Scholar 

  5. Lewis, D.A. and Levitt, P., Schizophrenia, as a disorder of neurodevelopment, Annu. Revol. Neurosci., 2002, vol. 25, pp. 409–432.

    Article  CAS  Google Scholar 

  6. Puig, M.V. and Gulledge, A.T., Serotonin and prefrontal cortex function: neurons, networks, and circuits, Mol. Neurobiol., 2011, vol. 44, pp. 449–464.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kawaguchi, Y., Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex, J. Neurosci., 1995, vol. 15, pp. 2638–2655.

    CAS  PubMed  Google Scholar 

  8. Zaitsev, A.V., Classification and functions of gabaergic interneurons of the mammalian neocortex, Biologicheskie membrany, 2013, vol. 30, pp. 253–270.

    CAS  Google Scholar 

  9. Faisal, A.A., Selen, L.P., and Wolpert, D.M., Noise in the nervous system, Nat. Revol. Neurosci., 2008, vol. 9, pp. 292–303.

    Article  CAS  Google Scholar 

  10. Simkus, C.R. and Stricker, C., The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurones of rat barrel cortex, J. Physiol., 2002, vol. 545, pp. 521–535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pare, D., Lebel, E., and Lang, E.J., Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo, J. Neurophysiol., 1997, vol. 78, pp. 1735–1739.

    CAS  PubMed  Google Scholar 

  12. Campanac, E. and Hoffman, D.A., Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex, J. Neurophysiol. 2013, vol. 109, pp. 2781–2792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Karayannis, T., Huerta-Ocampo, I., and Capogna, M., GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input, Cereb. Cortex, 2007, vol. 17, pp. 1213–1226.

    Article  PubMed  Google Scholar 

  14. Povysheva, N.V., Gonzalez-Burgos, G., Zaitsev, A.V., Kroner, S., Barrionuevo, G., Lewis, D.A., and Krimer, L.S., Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex, Cereb. Cortex, 2006, vol. 16, pp. 541–552.

    Article  CAS  PubMed  Google Scholar 

  15. Povysheva, N.V., Zaitsev, A.V., Rotaru, D.C., Gonzalez-Burgos, G., Lewis, D. A., and Krimer, L.S., Parvalbumin-positive, basket interneurons in monkey and rat prefrontal cortex, J. Neurophysiol., 2008, vol. 100, pp. 2348–2360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dantzker, J.L. and Callaway, E.M., Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons, Nat. Neurosci., 2000, vol. 3, pp. 701–707.

    Article  CAS  PubMed  Google Scholar 

  17. Thomson, A.M. and Lamy, C., Functional maps of neocortical local circuitry, Front. Neurosci.. 2007, vol. 1, pp. 19–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zaitsev, A.V. and Lewis, D.A., Functional properties and short-term dynamics of unidirectional and reciprocal synaptic connections between layer 2/3 pyramidal cells and fast-spiking interneurons in juvenile rat prefrontal cortex, Eur. J. Neurosci., 2013, vol. 38, pp. 2988–2998.

    Google Scholar 

  19. Beierlein, M., Gibson, J.R., and Connors, B.W., Two dynamically distinct inhibitory networks in layer 4 of the neocortex, J. Neurophysiol., 2003, vol. 90, pp. 2987–3000.

    Article  PubMed  Google Scholar 

  20. Holmgren, C., Harkany, T., Svennenfors, B., and Zilberter, Y., Pyramidal cell communication within local networks in layer 2/3 of rat neocortex, J. Physiol., 2003, vol. 551, pp. 139–153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Angulo, M.C., Rossier, J., and Audinat, E., Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex, J. Neurophysiol., 1999, vol. 82, pp. 1295–1302.

    CAS  PubMed  Google Scholar 

  22. Hull, C., Isaacson, J.S., and Scanziani, M., Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs, J. Neurosci., 2009, vol. 29, pp. 9127–9136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zaitsev, A.V., Kim, K.K., Fedorova, I.M., Dorofeeva, N.A., Magazanik, L.G., and Tikhonov, D.B., Specific mechanism of use-dependent channel block of calcium-permeable AMPA receptors provides activity-dependent inhibition of glutamatergic neurotransmission, J. Physiol., 2011, vol. 589, pp. 1587–1601.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zaitsev, A.V., Kim, K.Kh., and Magazanik, L.G., The role of calcium-permeable AMPA receptors in the mechanism of disynaptic inhibition in the rat prefrontal cortex, Biologicheskie Membrany, 2012, vol. 29, pp. 114–122.

    CAS  Google Scholar 

  25. Somogyi, P., Tamas, G., Lujan, R., and Buhl, E.H., Salient features of synaptic organisation in the cerebral cortex, Brain Res. Brain Res. Revol., 1998, vol. 26, pp. 113–135.

    Article  CAS  Google Scholar 

  26. Bekkers, J.M., Richerson, G.B., and Stevens, C.F., Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 5359–5362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Franks, K.M., Stevens, C.F., and Sejnowski, T.J., Independent sources of quantal variability at single glutamatergic synapses, J. Neurosci., 2003, vol. 23, pp. 3186–3195.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Isaac, J.T., Ashby, M.C., and McBain, C.J., The role of the glur2 subunit in AMPA receptor function and synaptic plasticity, Neuron, 2007, vol. 54, pp. 859–871.

    Article  CAS  PubMed  Google Scholar 

  29. Swanson, G.T., Kamboj, S.K., and Cull-Candy, S.G., Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition, J. Neurosci., 1997, vol. 17, pp. 58–69.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Original Russian Text © S.L. Malkin, K.Kh. Kim, D.B. Tikhonov, A.V. Zaitsev, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 6, pp. 440–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, S.L., Kim, K.K., Tikhonov, D.B. et al. Properties of spontaneous and miniature excitatory postsynaptic currents in neurons of the rat prefrontal cortex. J Evol Biochem Phys 50, 506–514 (2014). https://doi.org/10.1134/S0022093014060052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014060052

Key words

Navigation