Skip to main content
Log in

Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 in Drosophila melanogaster males with altered structure of the limk1 gene

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In this paper we present results of a comprehensive analysis of the effect of heat shock at different stages of ontogenesis (adult stage, development of mushroom bodies and the central complex) on courtship behavior (latency, duration and efficacy of courtship), sound production (pulse interval, dispersion of interpulse interval, percentage of distorted pulses, the mean duration of the pulse samples), learning and memory formation compared with the content of LIMK1 isoforms in male Drosophila melanogaster with altered structure of the limk1 gene. The heat shock is shown to affect the behavior parameters and LIMK1 content in the analyzed strains of Drosophila. The most pronounced effect of the heat shock was observed at the stage of development of the central complex (CC). Heat shock at CC and adults restores the ability of learning and memory formation in the mutant strain agn ts3 that normally is unable to learn and form memory. Correlations between changes of content of LIMK1 isoforms and behavioral parameters due to heat shock have not been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burston, S.G. and Clarke, A.R., Molecular chaperones: physical and mechanistic properties, Essay Biochem., 1995, vol. 29, pp. 125–136.

    CAS  Google Scholar 

  2. Hartl, F.U., Molecular chaperones in cellular protein folding, Nature, 1996, vol. 381(6583), pp. 571–579.

    Article  CAS  PubMed  Google Scholar 

  3. Yost, H.J. and Lindquist, S., RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis, Cell, 1986, vol. 45, no. 2, pp. 185–193.

    Article  CAS  PubMed  Google Scholar 

  4. Bamburg, J.R. and Bloom, G.S., Cytoskeletal pathologies of Alzheimer disease, Cell Motil. Cytoskelet., 2009, vol. 66, no. 8, pp. 635–649.

    Article  CAS  Google Scholar 

  5. Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization, Nature, 1998, vol. 393, no. 6687, pp. 809–812.

    Article  CAS  PubMed  Google Scholar 

  6. Maloney, M.T. and Bamburg, J.R., Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies, Mol. Neurobiol., 2007, vol. 35, no. 1, pp. 21–44.

    Article  CAS  PubMed  Google Scholar 

  7. Bamburg, J.R. and Zheng, J.Q., ADF/cofilinmediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity, Nat. Neurosci., 2010, vol. 13, no. 10, pp. 1208–1215.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gromov, P.S. and Celis, J.E., Identification of two molecular chaperons (HSX70, HSC70) in mature human erythrocytes, Exp Cell Res., 1991, vol. 195, no. 2, pp. 556–559.

    Article  CAS  PubMed  Google Scholar 

  9. Li, R., Soosairajah, J., Harari, D., Citri, A., Citri, A., Price, J., Ng, H.L., Morton, C.J., Parker, M.W., Yarden, Y., and Bernard, O., Hsp90 increases LIM kinase activity by promoting its homo-dimerization, FASEB J., 2006, vol. 20, pp. 417–425.

    Google Scholar 

  10. Lim, M.K., Kawamura, T., Ohsawa, Y., Ohtsubo, M., Asakawa, S., Takayanagi, A., and Shimizu, N., Parkin interacts with LIM kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination, Exp. Cell Res., 2007, vol. 313, pp. 2858–2874.

    Article  CAS  PubMed  Google Scholar 

  11. Bonini, N.M., Chaperoning brain degeneration, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 4, pp. 16 407–16 019.

    Article  CAS  Google Scholar 

  12. Savvateeva-Popova, E.V., Peresleni, A.I., Sharagina, L.M., Medvedeva, A.V., Korochkina, S.E., Grigoreva, I.V., Dyuzhikova, N.A., Popov, A.V., Baricheva, E.M., Karagodin, D.A., and Heisenberg, M., The Peculiarities of architecture of X-chromosome, of expression of LIM-kinase 1 and reco1 and recombination in the mutants of Drosophila locus agnostic: the model of Williams syndrome of human, Genetika, 2004, vol. 40, no. 6, pp.749–769.

    CAS  PubMed  Google Scholar 

  13. Kaminskaya, A.N., Nikitina, E.A., Payalina, t.L., Molotkov, D.A., Zakharov, G.A., Popov, A.V., and Savvateeva-Popova, E.V., Effect of correlation of isoforms LIMK1 on courtship behavior of Drosophila melanogaster: the complex approach, Ecologic Genetika, 2011, vol. 9, no. 4, pp.3–14.

    Google Scholar 

  14. Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M., Genetic dissection of consolidated memory in Drosophila, Cell, 1994, vol.79, no. 1, pp. 35–47.

    Article  CAS  PubMed  Google Scholar 

  15. Popov, A.V., Savvateeva-Popova, E.V., and Kamyshev, N.G., The peculiarities of the acoustic communication in the Drosophila Drosophila melanogaster, Sensor. sistemy, 2000, vol. 14, pp. 60–74.

    Google Scholar 

  16. Nikitina, E.A., Tokmacheva, E.V., and Savvateeva-Popova, E.V., The heat shock at the period of the development of the central brain structures of Drosophila: memory development in mutant l(1) ts403 Drosophila melanogaster, Genetika, 2003, vol. 39, no. 1, pp. 33–40.

    CAS  PubMed  Google Scholar 

  17. Li, W., Tully, T., and Kalderon, D., Effects of a conditioned Drosophila PKA mutant on olfactory learning and memory, Learn. Mem., 1996, vol. 2, no. 6, pp. 320–333.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y., Murshid, A., Prince, T., and Calderwood, S.K., Protein kinase A regulates molecular chaperone transcription and protein aggregation, PLoS One, 2011, vol. 6, no. 12, pp. e28950. Doi: 10.1371.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Patton, Z.J., The effect of thermal stress on the mating behavior of three Drosophila species, Physiol. Biochem. Zool., 2001, vol. 74(b), pp. 783–788.

    Article  Google Scholar 

  20. Ewing, A.W., Arthropod Bioacoustics: Neurobiology and Behavior, N.Y., Cornel University Press, 1989.

    Google Scholar 

  21. Heisenberg, M., Central brain function in insects. Genetic studies on the mushroom bodies and central complex in Drosophila, Fortschritte der Zoologie, 1988, Band 39, Neural Basis of Behavioural Adaptations, Stuttgard, Jena, New York, Gustav Fisher.

    Google Scholar 

  22. Popov, A.V., Peresleni, A.I., Savvateeva-Popova, E.V., Wolf, R., and Heisenberg, M., The role of mushroom bodies and central complex of brain of Drosophila melanogaster in the organization of courtship behavior and communicative sound-irradiation, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, no. 6, pp. 521–530

    CAS  PubMed  Google Scholar 

  23. Wolf, R., Wittig, T., Liu, L., Wustmann, G., Eyding, D., and Heisenberg, M., Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning, Learn. and Mem., 1998, vol. 5, nos. 1–2, pp. 166–178.

    CAS  Google Scholar 

  24. Lee, T., Lee, A., and Luo, L., Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast, Development, 1999, vol. 126, no. 18, pp. 4065–4076.

    CAS  PubMed  Google Scholar 

  25. Hanesch, U., Fischbach, K.-F., and Heisenberg, M., Neuronal architecture of the central complex in Drosophila melanogaster, Cell Tissue, 1989, vol. 257, pp. 343–366.

    Article  Google Scholar 

  26. Klyachko, V.A. and Stevens, C.F., Temperaturedependent shift of balance among the components of short-term plasticity in hipocampal synapse, J. Neurosci., 2006, vol. 26, pp. 6945–6957.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S.T., Bae, E., Kaang, B.K., and Kim, J., Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster, Nat. Genet., 2005, vol. 37, pp. 305–310.

    Article  CAS  PubMed  Google Scholar 

  28. Hong, S.T., Bang, S., Paik, D., Kang, J., Hwang, S., Jeon, K., Chun, B., Hyun, S., Lee, Y., and Kim, J., Histamine and its receptors modulates temperature-preference behavior in Drosophila, J. Neurosci., 2006, vol. 26, pp. 7245–7256.

    Article  CAS  PubMed  Google Scholar 

  29. Sigrist, S.J., Reiff, D.F., Thiel, P.R., Steinert, J.R., and Schuster, C.M., Experience-dependent strengthening of Drosophila neuromuscular junctions, J. Neurosci., 2003, vol. 23, pp. 6546–6556.

    CAS  PubMed  Google Scholar 

  30. Zhong, Y. and Wu, C.F., Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila, J. Neuro sci., 2004, vol. 24, pp. 1439–1445.

    CAS  Google Scholar 

  31. Medvedeva, A.V., Molotkov, D.A., Nikitina, E.A., Popov, A.V., Karagodin, D.A., Baricheva, E.M., and Savvateeva-Popova, E.V., The systematic regulation of the genetic and cytogenetic processes by the signal cascade of actin remodulation: locus agnostic of Drosophila, Genetika, 2008, vol. 44, no. 6, pp.669–681.

    CAS  Google Scholar 

  32. Savvateeva, E.V. and Kamyshev, N.G., Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster, Pharmacol. Biochem. Behav., 1981, vol. 14, no. 5, pp. 603–611.

    Article  CAS  PubMed  Google Scholar 

  33. Popov, A.V., Peresleni, A.I., Komarova, A.Yu., and Savvateeva-Popova, E.V., The stability of characteristics of the courtship behavior and communicative sound-irradiation of the males of Drosophila melanogaster to the stressor actions at different stages of ontogenesis, Sensor. Sistemy, 2006, vol. 20, no. 2, pp. 131–140

    Google Scholar 

  34. Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M., and Greenberg, M.E., A brain-specific microRNA regulates dendritic spine development, Nature, 2006, vol. 439, no. 7074, pp. 283–289.

    Article  CAS  PubMed  Google Scholar 

  35. Zakharov, G.A., The molecular-genetic studies of the role of components of the signal cascade of actin remodulation in genesis of behavioral disturbances of Drosophila melanogaster, Candidate Sci. Dissertation (Biology), St. Petersburg, 2012.

    Google Scholar 

  36. Savvateeva-Popova, E.V., Peresleni, A.I., Sharagina, L.M., Tokmacheva, E.V., Medvedeva, A.V., Kamyshev, N.G., Popov, A.V., Czerskii, P.V., Baricheva, E.M., Karagodin, D.A., and Heisenberg, M., The complex study of the Drosophila mutants by locus agnostic: the model for correlation of the disturbances of genome architecture and cognitive functions, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, no. 6, pp. 557

    CAS  PubMed  Google Scholar 

  37. Minamide, L.S., Striegl, A.M., Boyle, J.A., Meberg, P.J., and Bamburg, J.R., Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function, Nat. Cell Biol., 2000, vol. 2, pp. 628–636.

    Article  CAS  PubMed  Google Scholar 

  38. Munsie, L., Caron, N., Atwal, R.S., Marsden, I., Wild, E.J., Bamburg, J.R., Tabrizi, S.J., and Truant, R., Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease, Hum. Mol. Genet., 2011, vol. 20, no. 10, pp. 1937–1951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mason, P.J., Hall, L.M.C., and Gausz, J., The expression of heat shock genes during normal development in Drosophila melanogaster, Mol. Gen. Genet., 1984, vol. 194, pp. 73–78.

    Article  CAS  Google Scholar 

  40. Morimoto, R.I., Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators, Genes Dev., 1998, vol. 12, no. 24, pp. 3788–3796.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kaminskaya.

Additional information

Original Russian Text © E.A. Nikitina, A.N. Kaminskaya, D.A. Molotkov, A.V. Popov, E.V. Savvateeva-Popova, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 2, pp. 137–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, E.A., Kaminskaya, A.N., Molotkov, D.A. et al. Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 in Drosophila melanogaster males with altered structure of the limk1 gene. J Evol Biochem Phys 50, 154–166 (2014). https://doi.org/10.1134/S0022093014020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014020082

Key words

Navigation