Skip to main content
Log in

Catecholaminergic regulation of autorhythmical viscero- and somatomotor activity in early rat ontogenesis

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Ontogenetic peculiarities of catecholaminergic regulation of three vitally important physiological processes are described: heart beating, respiration, and early somatomotor activity. They are subordinated to the autorhythmical regime and are submitted to modulating effects of noradrenergic and dopaminergic mechanisms. There are considered age-related changes of this effect whose peculiarity is polar changes of reactions in the process of their maturation from the predominantly excitatory reactions at early stages to the predominantly inhibitory ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirota, A., Kamino, K., Komuro, H., Sakai, T., and Yoada, T., Early Events in Development of Electrical Activity and Contraction in Embryonic Rat Heart Assessed by Optical Recording, J. Physiol., 1985, vol. 369, pp. 209–227.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Ji, R.P., Phoon, C.K., Aristizábal, O., Mc-Grath, K.E., Palis, J., and Turnbull, D.H., Onset of Cardiac Function during Early Mouse Embryogenesis Coincides with Entry of Primitive Erythroblasts into the Embryo Proper, Circ. Res., 2003, vol. 92, pp. 133–135.

    Article  PubMed  CAS  Google Scholar 

  3. Narajanan, C.H., Fox, M.W., and Hamburger, V., Prenatal Development of Spontaneous and Evoked Activity in the Rat, Behavior, 1971, vol. 40, pp. 100–134.

    Article  Google Scholar 

  4. Voino-Yasenetskii, A.V., Pervichnye ritmy vozbuzhdeniya v ontogeneze (Primary Rhythms of Excitation in Ontogenesis), Leningrad, Nauka, 1974.

    Google Scholar 

  5. Bursian, A.V., Rannii ontogenez motornogo apparata teplokrovnykh (Early Ontogenesis of Motor Apparatus in Homoiotherms), Leningrad, Nauka, 1983.

    Google Scholar 

  6. Shigenobu, K., Tanaka, H., and Kasuya, Y., Changes in Sensitivity of Rat Heart to Norepinephrine and Isoproterenol during Pre- and Postnatal Development and its Relation to Sympathetic Innervation, Dev. Pharm. Ther., 1988, vol. 11, pp. 226–236.

    CAS  Google Scholar 

  7. Timofeeva, O.P., Vdovichenko, N.D., and Kuznetsov, S.V., The Effect of Change of the Activity Level of the Catecholaminergic Systems on the Motor, Respiratory and Cardiac Function in Rat Fetuses, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, pp. 258–267.

    PubMed  CAS  Google Scholar 

  8. Timofeeva, O.P., Vdovichenko, N.D., and Kuznetsov, S.V., Change of the Character of the Motor, Respiratory and Cardiac Function in Rat Fetuses at Stimulation of Release of Endogenous Catecholamines, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, pp. 295–298.

    Google Scholar 

  9. Kuznetsov, S.V., Dmitrieva, L.E., and Sizonov, V.A., The Cardiac, Respiratory and Motor Function in Norm and after Activation of Catecholaminergic System in Newborn Rat Pups, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, pp. 367–379.

    PubMed  CAS  Google Scholar 

  10. Zang, L.I. and Poo, M.M., Electrical Activity and Development of Neural Circuits, Nat. Neurosci., 2001, vol. 4, pp. 1207–1214.

    Article  Google Scholar 

  11. Owens, D.F. and Kriegstein, A.R., Developmental Neurotransmitters? Neurol., 2002, vol. 36, pp. 989–991.

    CAS  Google Scholar 

  12. Demargue, M., Represa, A., Becq, H., Khalilov, I., Ben-Ari, Y., and Aniksztejn, L., Paracrine Intercellular Communication by a Ca2+ and SNARE-Independent Release of GABA and Glutamate Prior to Synapse Formation, Neurol., 2002, vol. 36, pp. 1051–1061.

    Google Scholar 

  13. Herlenius, E., and Lagercrantz, H., Development of Neurotransmitter System during Critical Periods, Exper.. Neurol., 2004, vol. 190, pp. S8–S21.

    Article  CAS  Google Scholar 

  14. Sickles, A.E., Stenhouwer, D.J., and Van-Hartesveldt, C., Dopamine D1 and D2 Antagonists Block L-DOPA-Elicited Air Stepping in Neonatal Rats, Brain Res. Dev., 1992, vol. 68, pp. 17–22.

    Article  CAS  Google Scholar 

  15. Misu, Y., Kitahama, K., and Goshima, Y., L-3,4-Dihydroxyphenylalanine as a Neurotransmitter Candidate in the Central Nervous System, Pharmacol. Therapeut., 2003, vol. 97, pp 117–137.

    Article  CAS  Google Scholar 

  16. Happe, H.K., Coulter, C.L., Gerety, M.E., Sanders, J.D., O’Rourke, M., Bylund, D.B., and Murrin, L.C., Alpha-2 Adrenergic Receptor Development in Rat CNS: an Autoradiographic Study, Neurosci., 2004, vol. 23, pp. 167–178.

    Article  CAS  Google Scholar 

  17. Stanfield, B.B., Evidence that Dorsal Locus Coeruleus Neurons Can Maintain their Spinal Cord Projection Following Neonatal Transaction of the Dorsal Adrenergic Bundle in Rats, Exper. Brain Res., 1989, vol. 78, pp. 533–538.

    Article  CAS  Google Scholar 

  18. Sieber-Blum, M. and Ren, Z., Norepinephrine Transporter Expression and Function in Noradrenergic Cell Differentiation, Mol. Cell Biochem., 2000, vol. 212, pp. 61–70.

    Article  PubMed  CAS  Google Scholar 

  19. Sanders, J.D., Happe, H.K., Bylund, D.B., and Murrin, L.C., Development of the Norepinephrine Transporter in the Rat CNS, Neurosci., 2005, vol. 130, pp. 107–117.

    Article  CAS  Google Scholar 

  20. Loizou, L.A., The Postnatal Ontogeny of Monoamine Containing Structures of the Albino Rat, Brain Res., 1972, vol. 40, pp. 395–418.

    Article  PubMed  CAS  Google Scholar 

  21. Commissiong, J.W., Development of Catecholaminergic Nerves in the Spinal Cord of the Rat, Brain Res., 1983, vol. 264, pp. 197–208.

    Article  PubMed  CAS  Google Scholar 

  22. Bjorclund, A. and Lindvall, O., Catecholaminergic Brainstem Regulatory Systems, Handbook of Physiology, Mountcastle, V.B. and Bloom, F.E., Eds., Bethesda (MD): American Physiological Society, 1986, Section 1, V, IV, pp. 155–235.

    Google Scholar 

  23. Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G., Dopamine Receptors: from Structure to Function, Physiol. Rev., 1998, vol. 78, pp. 189–225.

    PubMed  CAS  Google Scholar 

  24. Yao, W.D., Spealman, R.D., and Zhang, Y., Dopaminergic Signaling in Dendritic Spines, Biochem. Pharmacol., 2008, vol. 75, pp. 2055–2080.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Olson, L. and Seiger, A., Early Prenatal Ontogeny of Central Monoamine Neurons in the Rat: Fluorescence Histochemical Observations, Z. Anat. Entwicklungsgesch., 1972, vol. 137, pp. 301–316.

    Article  PubMed  CAS  Google Scholar 

  26. Miyaguchi, H., Kato, I., Sano, T., Sabajin, H., Fujimot, S., and Togar, H., Dopamine Penetrates to the Central Nervous System in Developing Rats, Pediatr. Internat., 1999, vol. 41, pp. 263–273.

    Article  Google Scholar 

  27. Schlumpf, M., Lichtensteiger, W., Shoemaker, W., and Bloom, F., Fetal Monoamine Systems: Early Stages and Cortical Projections, Biogenic Amines in Development (Parves, H. and Parves, S., Eds.), Amsterdam, Elsevier, Biomedical Press, 1980, Part 3, pp. 567–590.

    Google Scholar 

  28. Ugrumov, M.V., Developing Brain as an Endocrine Organ: a Paradoxical Reality, Neurochem. Res., 2010, vol. 35, pp. 837–850.

    Article  PubMed  CAS  Google Scholar 

  29. Ugrumov, M.V., Brain in the Role of Endocrine Gland in Adult and Developing Organism, Ross. Fiziol. Zh., 2004, vol. 5, pp. 632–637.

    Google Scholar 

  30. Ebert, S.N. and Thompson, R.P., Embryonic Epinephrine Synthesis in the Rat Heart before Innervation. Association with Pacemaking and Conduction Tissue Development, Circ. Res., 2001, vol. 88, pp. 117–124.

    Article  PubMed  CAS  Google Scholar 

  31. Ebert, S.N. and Taylor, D.G., Catecholamines and Development of Cardiac Pacemaking: an Intrinsically Intimate Relationship, Cardiovasc. Res., 2006, vol. 72, pp. 364–374.

    Article  PubMed  CAS  Google Scholar 

  32. Ebert, S.N., Rong, Q., Boe, S., and Pfeifer, K., Catecholamine-Synthesizing Cells in the Embryonic Mouse Heart, Ann. N.Y. Acad. Sci., 2008, vol. 148, pp. 317–324.

    Article  Google Scholar 

  33. Pappano, A.J., Ontogenetic Development of Autonomic Neuroeffector Transmission and Transmitter Reactivity in Embryonic and Fetal Hearts, Pharmacol. Rev., 1977, vol. 29, pp. 3–34.

    PubMed  CAS  Google Scholar 

  34. Schiebler, T.H. and Heene, R., Nachweis von Katecholaminen in Rattenherzen wärend der Entwicklung, Histochemie, 1968, no. 14, pp. 328–334.

    Google Scholar 

  35. Scheibler, T.H. and Winkler, J., On the Vegetative Cardiac Innervation, Progr. Brain Res., 1971, vol. 34, pp. 405–413.

    Article  Google Scholar 

  36. Drugge, E.D., Rosen, M.R., and Robinson, B., Neuronal Regulation of the Development of the α-Adrenergic Chronotropic Response in the Rat Heart, Circ. Res., 1985, vol. 57, pp. 415–423.

    Article  PubMed  CAS  Google Scholar 

  37. Adolf, E.F. and Hoy, P.A., Ventilation of Lungs in Infant and Adult Rats and in Responses to Hypoxia, J. Appl. Physiol., 1960, vol. 15, pp. 1075–1086.

    Google Scholar 

  38. Tucker, D.C. and Johnson, A.K., Development of Autonomic Control of Heart Rate in Genetically Hypertensive and Normotensive Rats, Am. J. Physiol., 1984, vol. 246, pp. R570–R577.

    PubMed  CAS  Google Scholar 

  39. Haddad, C. and Armour, J.A., Ontogeny of Canine Intrathoracic Cardiac Nervous System, Am. J. Physiol., 1991, vol. 261, pp. R920–R927.

    PubMed  CAS  Google Scholar 

  40. Kasparov, S. and Paton, J.F.R., Changes in Baroreceptor Vagal Reflex Performance in the Developing Rat, Eur. J. Physiol., 1997, vol. 434, pp. 438–444.

    Article  CAS  Google Scholar 

  41. Hseu, S.S., Yen, Y.W., Du, F., and Sun, L.F., Heart Rate Variability in Neonatal Rats after Perinatal Cocaine Exposure, Neurotox. Teratol., 1998, vol. 20, pp. 601–605.

    Article  CAS  Google Scholar 

  42. Bursian, A.V., Dmitrieva, L.E., and Sizonov, V.A., Role of Sympathetic and Parasympathetic Mechanisms in Formation of Secondary Heart Rhythms in Rat Ontogenesis, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, pp. 69–95.

    Google Scholar 

  43. Slotkin, T.A., Smith, P.G., Lau, C., and Bareis, D.L., Functional Aspects of Development of Cathecholamine Biosynthesis and Release in the Sympathetic Nervous System, Biogenic Amines in Development, Amsterdam. Elsevier, 1980, pp. 29–48.

    Google Scholar 

  44. Rajaofetra, N., Ridet, J.S., Poulat, P., Marlier, L., Sandilion, F., Geffard, M., and Privat, A., Immunocytochemical Mapping of Noradrenergic Projection to the Rat Spinal Cord with an Antiserum against Noradrenaline, Neurocytol., 1992, vol. 2, pp. 481–494.

    Article  Google Scholar 

  45. Bursian, A.V., Timofeeva, O.P., and Voskresenskii, V.O., About Role of the Catecholaminergic Mechanisms in Regulation of Autogenic Periodic Motor Excitation in Rat Pups, Zh. Evol. Biokhim. Fiziol., 1987, vol. 23, pp. 755–760.

    PubMed  CAS  Google Scholar 

  46. Bursian, A.V. and Timofeeva, O.P., About Participation of Catecholaminergic Systems in Regulation of Autogenic Motor Excitation in Rat Pups, Usp. Fiziol. Nauk, 1991, vol. 22, pp. 3–19.

    PubMed  CAS  Google Scholar 

  47. Navarrete, R., Slawińska, U., and Vrbová, G., Elektromyographic Activity Pattern of Ankle Flexor and Extensor Muscles during Spontaneous and L-DOPA-Induced Locomotion in Freely Moving Neonatal Rats, Exp. Neurol., 2002, vol. 173, pp. 256–265.

    Article  PubMed  Google Scholar 

  48. Han, P., Nakanischi, S.T., Tran, M.A., and Whelan, P.J., Dopaminergic Modulation of Spinal Neuronal Excitability, J. Neurosci., 2007, vol. 27, pp. 13 192–13 204.

    Article  CAS  Google Scholar 

  49. Bourne, J.A., SCH 23390: The First Selective Dopamine D1-Like Receptor Antagonist, CNSW Drug Revievs, 2001, vol. 4, pp. 399–414.

    Google Scholar 

  50. Kourshunov, A., Meyer, M.F., and Krasnianski, M., Postsynaptic Nigrostriatal Dopamine Receptors and Their Role in Movement Regulation, Neural Transmis., 2010, vol. 117, pp. 1359–1369.

    Article  CAS  Google Scholar 

  51. Lapointe, N.P., Rouleau, P., Ung, R.V., and Guertin, P.A., Specific Role of Dopamine D1 Receptors in Spinal Network Activation and Rhythmic Movement Induction in Vertebrates, J. Physiol., 2009, vol. 587, pp. 1499–1511.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Norreel, J.C., Pflieger, J.C., Pearstein, E., Simeoni-Aleas, J., Clarac, F., and Vinay, L., Reversible Desorganisation of the Locomotor Pattern after Neonatal Spinal Cord Transection in the Rat, J. Neurosci., 2009, vol. 587, pp. 1499–1511.

    Google Scholar 

  53. Moody, C.A., Robinson, S.R., Spear, L.P., and Smotherman, W.R., Fetal Behavior and the Dopamine System: Activity Effects of D1 and D2 Receptor Manipulation, Pharmacol. Biochem. Behav., 1993, vol. 23, pp. 843–850.

    Article  Google Scholar 

  54. Bursian, A.V., Timofeeva, O.P., and Vdovichenko, N.D., Effect of Haloperidol on Late Motor Discharges Appearing at Stimulation of Afferents of Flexor Reflex in the Rat Pups of Early Age, Zh. Evol. Biokhim. Fiziol., 1998, vol. 34, pp. 37–42.

    PubMed  CAS  Google Scholar 

  55. Hilaire, G., Endogenous Noradrenaline Affects the Maturation and Function of the Respiratory Network: Possible Implication for SIDS, Auton. Neurosci., 2006, vol. 126–127, pp. 320–331.

    Article  PubMed  CAS  Google Scholar 

  56. Viemary, J.C., Bevengut, M., Burnet, H., Coulon, P., Peguignot, J.M., Tiveron, M.C., and Hilaire, G., Phox2a Gene, A6 Neurons, and Noradrenaline are Essential for Development of Normal Respiratory Rhythm in Mice, J. Neurosci., 2004, vol. 24, pp. 928–937.

    Article  CAS  Google Scholar 

  57. Viemary, J.-C. and Tryba, A.K., Bioaminergic Neuromodulation of Respiratory Rhythm in Vitro, Respirat. Physiol. Neurobiol., 2009, vol. 168, pp. 69–75.

    Article  CAS  Google Scholar 

  58. Champagnat, J., Morin-Surun, M.P., Bouvier, J., Thoby-Brisson, M., and Fortin, G., Prenatal Development of Central Rhythm Generation, Respirat. Physiol. Neurobiol., 2011, vol. 178, pp. 146–155.

    Article  Google Scholar 

  59. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and Feldman, J.L., Pre-Botzinger Complex: a Brainstem Region That May Generate Respiratory Rhythm in Mammals, Science, 1991, vol. 254, pp. 726–729.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Pagliardini, S., Ren, J., and Greer, J.J., Ontogeny of the pre-Botzinger Complex in Perinatal Rat, J. Neurosci., 2003, vol. 23, pp. 9575–9584.

    PubMed  CAS  Google Scholar 

  61. Kobayashi, K., Lemke, R.P., and Greer, J., Ultrasound Measurement of Fetal Breathing Movements in the Rat, J. Appl. Physiol., 2001, vol. 91, pp. 316–320.

    PubMed  Google Scholar 

  62. Hilaire, G., Viemari, J.Ch., Coulon, P., Simonneau, M., and Bevengut, M., Modulation of the Respiratory Rhythm Generator by Pontine Noradrenergic A5 and A6 Groups in Rodents, Respirat Physiol. Neurobiol., 2004, vol. 143, pp. 187–197.

    Article  CAS  Google Scholar 

  63. Andrade, R. and Agajanian, G., Cell Activity in Noradrenergic Region: Responses to Drugs and Peripheral Manipulations of Blood Pressure, Brain Res., 1982, vol. 242, pp. 125–135.

    Article  PubMed  CAS  Google Scholar 

  64. Viemari, J.C., Bévengut, M., Coulon, P., and Hilaire, G., Nasal Trigeminal Inputs Release the A5 Inhibition Received by the Respiratory Rhythm Generator of the Mouse Neonate, J. Neurophysiol., 2004, vol. 91, no. 2, pp. 746–758.

    Article  PubMed  Google Scholar 

  65. Timofeeva, O.P. and Vdovichenko, N.D., Study of Cardiac, Respiratory and Motor Activities in Rat Fetus, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 559–566.

    PubMed  CAS  Google Scholar 

  66. Tryba, A.K., Peňa, F., Lieske, S.H., Viemari, J.C., Thobi-Briesson, M., and Ramirez, J.M., Differential Modulations of Neural Network and Pacemaker Activity Underlying Eupnea Sigh Breathing Activities, J. Neurophysiol., 2008, vol. 99, pp. 2114–2115.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bursian.

Additional information

Original Russian Text © A.V. Bursian, 2014, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2014, Vol. 50, No. 1, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursian, A.V. Catecholaminergic regulation of autorhythmical viscero- and somatomotor activity in early rat ontogenesis. J Evol Biochem Phys 50, 1–11 (2014). https://doi.org/10.1134/S0022093014010010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093014010010

Key words

Navigation