Skip to main content
Log in

New conceptual approach for search for molecular causes of diabetus mellitus, based on study of functioning of hormonal signaling systems

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review deals with analysis and generalization of our obtained data about the disturbances appearing in hormonal signaling systems under conditions of diabetes mellitus (DM)—in rats with experimental models of types 1 and 2 DM, in patients with DM, and in invertebrate animals (molluscs) with experimental diabetes-like states. There are discussed changes in functional state of the hormonal signaling systems regulated by different hormones, including biogenic amines and peptides of insulin group, in the wide spectrum of tissues. The conclusion has been made that the disturbances in hormonal signaling systems are the key molecular causes of physiological and metabolic disturbances appearing in types 1 and 2 DM. The concept is formulated of the polyhormonal genesis of DM and systemic character of disturbances by hormones of signaling cascades under conditions of DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pertseva, M.N. and Shpakov, A.O., Concept of Mo lecular Defects in Hormonal Signaling System as Causes of Endocrine Diseases, Ross. Fiziol. Zh. im. I.M. Sechenova, 2004, vol. 90, no. 8, pp. 446–447.

    Google Scholar 

  2. Pertseva, M.N., Kuznetsova, L.A., Shpakov, A.O., Plesneva, S.A., and Bondareva, V.M., New Approach in Study of Molecular Causes of Diabetes Mellitus: Detection of Functional Defects in Hormonal Signaling Mechanisms in the Experimental Type 2 Diabetes, Pathogenesis, 2006, vol. 4, no. 3, pp. 4–10.

    Google Scholar 

  3. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Kolychev, A.P., Bondareva, V.M., Chistyakova, O.V., and Pertseva, M.N., Functional Defects in Adenylyl Cyclase Signaling Mechanisms of Insulin and Relaxin Action in Skeletal Muscles of Rat with Streptozotocin Type 1 Diabetes, Central Eur. J. Biol., 2006, vol. 1, pp. 530–544.

    Article  CAS  Google Scholar 

  4. Pertseva, M.N., Plesneva, S.A., Shpakov, A.O., Rusakov, Yu.I., and Kuznetsova, L.A., Involvement of Adenylyl Cyclase Signalling System in the Action of Insulin and Mollusc Insulin-Like Peptide, Comp. Biochem. Physiol., 1995, vol. 112, pp. 689–695.

    Article  CAS  Google Scholar 

  5. Pertseva, M.N., Plesneva, S.A., Kuznetsova, L.A., Shpakov, A.O., and Derkach, K.V., On the Tyrosine Kinase Mechanism of the Novel Effect of Insulin and Insulin-Like Growth Factor-I: Stimulation of Adenylyl Cyclase System in Muscle Tissues, Biochem. Pharmacol., 1996, vol. 52, pp. 1867–1874.

    Article  CAS  PubMed  Google Scholar 

  6. Shpakov, A.O., Plesneva, S.A., Kuznetsova, L.A., and Pertseva, M.N., Study of Functional Organization of a New-Adenylyl Cyclase Signaling Mechanism of Action of Insulin, Biokhimiya, 2002, vol. 67, no. 3, pp. 403–412.

    Google Scholar 

  7. Pertseva, M.N., Shpakov, A.O., Plesneva, S.A., and Kuznetsova, L.A., A Novel View on the Mechanisms of Action of Insulin and Other Insulin Superfamily Peptides: Involvement of Adenylyl Cyclase Signaling System, Comp. Biochem. Physiol., 2003, vol. 134, pp. 11–36.

    Article  CAS  Google Scholar 

  8. Kuznetsova, L., Shpakov, A., Rusakov, Yu., Plesneva, S., Bondareva, V., and Pertseva, M., Com parative Study of Biological Activity of Insulins of Lower Vertebrates in the Novel Adenylyl Cyclase Test-System, Regul. Peptides, 2003, vol. 116, pp. 81–86.

    Article  CAS  Google Scholar 

  9. Pertseva, M., Shpakov, A., Kuznetsova, L., Plesneva, S., and Omeljaniuk, E., Adenylyl Cyclase Signaling Mechanisms of Relaxin and Insulin Action: Similarities and Differences, Cell Biol. Intern., 2006, vol. 30, pp. 533–540.

    Article  CAS  Google Scholar 

  10. Pertseva, M.N., Evolutional Biomedicine-a New Direction in Biological Science, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 5, pp. 401–408.

    CAS  PubMed  Google Scholar 

  11. Shpakov, A.O. and Pertseva, M.N., Signaling Systems of Lower Eukaryotes and Their Evolution, Int. Rev. Cell Mol. Biol., 2008, vol. 269, pp. 151–282.

    Article  CAS  PubMed  Google Scholar 

  12. Pertseva, M.N. and Shpakov, A.O., Prokaryotic Origin and Evolution of Chemosignaling Systems of Eukaryotes, Ross. Fiziol. Zh. im. I.M. Sechenova, 2008, vol. 94, no. 9, pp. 1029–1047.

    CAS  PubMed  Google Scholar 

  13. Pertseva, M.N. and Shpakov, A.O., Hypothesis of Evolutionary Origin of a Number of Human and Animal Diseases, Zh. Evol. Biokhim. Fiziol., 2010, vol. 46, no. 3, pp. 261–267.

    CAS  PubMed  Google Scholar 

  14. Orbeli, L.A., About Interrelations of Evolutionary Physiology and Medicine, Assembly Speech at the Grand Act Due to the 158-Anniversary of Foundation of Academy, Izd-vo Voenno-Med. Akad., Leningrad, 1958, 16 p.

    Google Scholar 

  15. Lasko, P., Diabetic Flies? Using Drosophila melanogaster to Understand the Causes of Monogenic and Genetically Complex Diseases, Clin. Genet., 2002, vol. 62, pp. 358–367.

    Article  CAS  PubMed  Google Scholar 

  16. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Guriyanov, I.A., and Pertseva, M.N., Molecular Causes of Change of Sensitivity of the Adenylyl Cyclase Signaling System of Cardiac Muscle to Biogenic Amines in Experimental Streptozotocin Diabetes, Tsitologiya, 2005, vol. 47, no. 6, pp. 540–548.

    CAS  Google Scholar 

  17. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Molecular Mechanisms of Change of Sensitivity of Adenylyl Cyclase Signaling System to Biogenic Amines in Streptozotocin Diabetes, Byull. Eksper. Biol. Med., 2005, vol. 140, no. 9, pp. 286–290.

    Google Scholar 

  18. Shpakov, A.O., Derkach, K.V, Chistyakova, I.V., Moyseyuk, I.V., and Bondareva, V.M., Change of Hormonal Sensitivity of Adenylyl Cyclase in Brain of Rats with Long-Term Streptozotocin Diabetes, Dokl. Akademii Nauk, 2012, vol. 446, no. 1, pp. 103–105.

    Google Scholar 

  19. Shpakov, A., Derkach, K., Moyseyuk, I., and Chistyakova, O., Alterations of Hormone-Sensitive Adenylyl Cyclase System in the Tissues of Rats with Long-Term Streptozotocin Diabetes and the Influence of Intranasal Insulin, Dataset Papers in Pharmacology, 2013, vol. 2013, Article ID 698435, 14 pages, http://dx.doi.org/10.7167/2013/698435.

  20. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Bondareva, V.M., Guriyanov, I.A., Vlasov, G.P., and Pertseva, M.N., A Decrease of Functional Activity of G-Proteins, Components of Hormone-Sensitive Adenylyl Cyclase Signaling System in Experimental Type 2 Diabetes, Byull. Eksper. Biol. Med., 2006, vol. 142, no. 12, pp. 641–645.

    Google Scholar 

  21. Shpakov, A.O., Chistyakova, O.V., Derkach, K.V., Moiseyuk, I.V., and Bondareva, V.M., Intranasal Insulin Affects Adenylyl Cyclase System in Rat Tissues in Neonatal Diabetes, Central Eur. J. Biol., 2012, vol. 7, pp. 33–47.

    Article  CAS  Google Scholar 

  22. Shpakov, A.O., Derkach, K.V, Chistyakova, O.V., Moyseyuk, I.V., Sukhov, I.B., and Bondareva, V.M., Effect of Intranasal Insulin and Serotonin on Functional Activity of Adenylyl Cyclase System in Myocardium, Ovaries, and Uterus of Rats with Prolonged Neonatal Model of Diabetes Mellitus, Zh. Evol. Biokhim. Fiziol., 2013, vol. 49, no. 2, pp. 118–127.

    CAS  PubMed  Google Scholar 

  23. Derkach, K.V., Shpakov, A.O., Moyseyuk, I.V., and Chistyakova, O.V., Functional Activity of Adenylyl Cyclase Signaling System in Brain, Myocardium, and Testes of Rats with the Eight- and 18-Month Neonatal Diabetes, Dokl. Akad. Nauk, 2013, vol. 448, no. 5, pp. 598–601.

    Google Scholar 

  24. Shpakov, A.O., Derkach, K.V., Moyseyuk, I.V., Chistyakova, O.V., and Bondareva, V.M., Hormonal Sensitivity of Adenylyl Cyclase in the Myocardium, Brain and Testes of 18-Month-Old Non-Diabetic and Diabetic Rats, Int. J. Biochem. Research & Review, 2013, vol. 3, pp. 1–20.

    Google Scholar 

  25. Shpakov, A.O., Alterations in Hormonal Signaling Systems in Diabetes Mellitus: Origin, Causality and Specificity, Endocrinol. Metab. Syndrome, 2012, vol. 1, no. 2, http://dx.doi.org/10.4172/2161-1017.1000e106.

    Google Scholar 

  26. Pertseva, M.N., Involvement of Adenylyl Cyclase Signaling Mechanism in Insulin and IGF-I Coregulation of Fundamental Cell Processes, Ann. N. Y. Acad. Sci., 2005, vol. 1040, pp. 429–430.

    Article  CAS  PubMed  Google Scholar 

  27. Scheen, A., Central Nervous System: a Conductor Orchestrating Metabolic Regulations Harmed by both Hyperglycaemia and Hypoglycaemia, Diabetes Metab., 2010, vol. 36(Suppl. 3), pp. S31–S38.

    Article  CAS  PubMed  Google Scholar 

  28. Baccetti, B., La Marca, A., Piomboni, P., Capitani, S., Bruni, E., Petraglia, F., and De Leo, V., Insulin-Dependent Diabetes in Men Is Associated with Hypothalamo-Pituitary Derangement and with Impairment in Semen Quality, Hum. Reprod., 2002, vol. 17, pp. 2673–2677.

    Article  CAS  PubMed  Google Scholar 

  29. Mandavia, C.H., Aroor, A.R., Demarco, V.G., and Sowers, J.R., Molecular and Metabolic Mecha nisms of Cardiac Dysfunction in Diabetes, Life Sci., 2013, vol. 92, no. 11, pp. 601–608.

    Article  CAS  PubMed  Google Scholar 

  30. Chiha, M., Njeim, M., and Chedrawy, E.G., Diabetes and Coronary Heart Disease: a Risk Factor for the Global Epidemic, Int. J. Hypertens., 2012, vol. 2012, no. 697240.

    Google Scholar 

  31. Magge, S.N., Cardiovascular Risk in Children and Adolescents with Type 1 and Type 2 Diabetes Mellitus, Curr. Cardiovasc. Risk Rep., 2012, vol. 6, pp. 591–600.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kuznetsova, L.A., Plesneva, S.A., Shpakov, A.O., Bondareva, V.M., and Pertseva, M.N., Insulin-Regulated Adenylyl Cyclase Signaling System of Rat Skeletal Muscles under Conditions of Insulin Administration in vivo and in the Insulin Insufficiency Induced by Streptozotocin Diabetes, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, no. 4, pp. 334–343.

    CAS  PubMed  Google Scholar 

  33. Musi, N. and Goodyear, L.J., Insulin Resistance and Improvements in Signal Transduction, Endocrine, 2006, vol. 29, pp. 73–80.

    Article  CAS  PubMed  Google Scholar 

  34. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., Guriyanov, I.A., Vlasov, G.P., and Pertseva, M.N., Identification of Disturbances in the Hormone-Sensitive AC-System in Tissues of Rats with Types 1 and 2 Diabetes with Use of Functional Probes and Synthetic Nanodimensioned Peptides, Technology of Living Systems, 2007, vol. 4, no. 5–6, pp. 96–108.

    CAS  Google Scholar 

  35. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Disturbance of Transduction of the Adenylyl Cyclase-Inhibiting Hormonal Signal in Myocardium and Brain of Rats with Experimental Type 2 Diabetes, Tsitologiya, 2007, vol. 49, no. 6, pp. 442–450.

    CAS  Google Scholar 

  36. Hashim, S., Liu, Y.Y., Wang, R., and Anand-Srivastava, M.B., Streptozotocin-Induced Diabetes Impairs G-Protein Linked Signal Transduction in Vascular Smooth Muscle, Mol. Cell. Biochem., 2002, vol. 240, pp. 57–65.

    Article  CAS  PubMed  Google Scholar 

  37. Hashim, S., Li, Y., Nagakura, A., Takeo, S., and Anand-Srivastava, M.B., Modulation of G-Protein Expression and Adenylyl Cyclase Signaling by High Glucose in Vascular Smooth Muscle, Cardiovasc. Res., 2004, vol. 63, pp. 709–718.

    Article  CAS  PubMed  Google Scholar 

  38. Shpakov, A., Chistyakova, O., Derkach, K., and Bondareva, V., Hormonal Signaling Systems of the Brain in Diabetes Mellitus, Neurodegenerative Diseases-Processes, Prevention, Protection and Monitoring (Ed. by R.C.-C. Chang), Intech Open Access Publisher, Rijeka, Croatia, 2011, pp. 349–386.

    Google Scholar 

  39. Shpakov, A.O., Functional State of Brain Signaling Systems Regulated by Biogenic Amines and Acetylcholine in Diabetes Mellitus, Tsitologiya, 2012, vol. 54, no. 6, pp. 459–468.

    CAS  Google Scholar 

  40. Shpakov, A.O. and Derkach, K.V., Peptidergic Signal Brain Systems in Diabetes Mellitus, Tsitologiya, 2012, vol. 54, no. 10, pp. 733–741.

    CAS  Google Scholar 

  41. Shpakov, A.O., Derkach, K.V., Chistyakova, O.V., Sukhov, I.B., Shipilov, V.N., and Bondareva, V.M., The Brain Adenylyl Cyclase Signaling System and Cognitive Functions in Rat with Neonatal Diabetes under the Influence of Intranasal Serotonin, J. Metab. Syndrome, 2012, vol. 1, no. 2, 9 pages, http://dx.doi.org/10.4172/jms.1000104.

    Google Scholar 

  42. Chistyakova, O.V., Sukhov, I.B., Loshkareva, M.L., Shipilov, V.N., Bondareva, V.M., and Shpakov, A.O., Initial Chains of Insulin Signaling System in Brain of Rats with Experimental Diabetes, Byull. Eksper. Biol. Med., 2012, vol. 153, no. 1, pp. 31–34.

    Google Scholar 

  43. Robinson, R., Krishnakumar, A., and Paulose, C., Enhanced Dopamine D1 and D2 Receptor Gene Expression in the Hippocampus of Hypoglycaemic and Diabetic Rats, Cell. Mol. Neurobiol., 2009, vol. 29, pp. 365–372.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar, T., Antony, S., Gireesh, G., George, N., and Paulose, C., Curcumin Modulates Dopaminergic Receptor, CREB and Phospholipase C Gene Expression in the Cerebral Cortex and Cerebellum of Streptozotocin Induced Diabetic Rats, J. Biomed. Sci., 2010, vol. 17, pp. 43–53.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Shpakov, A.O., Derkach, K.V., and Bondareva, V.M., Change of Hormonal Sensitivity of Adenylyl Cyclase Signaling System of Rat Testicular Tissue under Conditions of Neonatal Streptozotocin Diabetes, Byull. Eksper. Biol. Med., 2009, vol. 148, no. 9, pp. 282–286.

    Google Scholar 

  46. Shpakov, A.O., Derkach, K.V., and Bondareva, V.M., Functional State of Adenylyl Cyclase Signaling System in Reproductive Tissues of Rats with Experimental type 1 Diabetes, Tsitologiya, 2010, vol. 52, no. 2, pp. 177–183.

    CAS  Google Scholar 

  47. Shpakov, A.O., Derkach, K.V., and Bondareva, V.M., Decrease of Sensitivity of Adenylyl Cyclase and of Heterotrimeric G-Proteins to Action of Chorionic Gonadotropin and Peptide Hormones in Tissues of with Experimental Type 2 Diabetes, Biomed. Khimiya, 2010, vol. 56, no. 6, pp. 700–709.

    CAS  Google Scholar 

  48. Shpakov, A.O., Functional State of Hypothalamo-Pituitary-Gonad System in Diabetes Mellitus, Probl. Endocrinol., 2010, vol. 56, no. 5, pp. 23–29.

    CAS  Google Scholar 

  49. Palmer, T.M., Taberner, P.V., and Houslay, M.D., Alterations in G-Protein Expression, Gi Function and Stimulatory Receptor-Mediated Regulation of Adipocyte Adenylyl Cyclase in a Model of Insulin-Resistant Diabetes with Obesity, Cell. Signal., 1992, vol. 4, pp. 365–377.

    Article  CAS  PubMed  Google Scholar 

  50. Weber, L.P. and Macleod, K.M., Influence of Streptozotocin Diabetes on the Alpha-1 Adrenoceptor and Associated G Proteins in Rat Arteries, J. Pharmacol. Exp. Ther., 1997, vol. 283, pp. 1469–1478.

    CAS  PubMed  Google Scholar 

  51. Kuznetsova, L.A. and Chistyakova, O.V., Experimental Models of Types 1 and 2 Diabetes Mellitus in Rats: Regulation of Glycogen Synthase Activity by Peptides of Insulin Superfamily and by Epidermal Growth Factor in Skeletal Muscles, Zh. Evol. Biokhim. Fiziol., 2012, vol. 48, no. 1, pp. 22–28.

    CAS  PubMed  Google Scholar 

  52. Erol, A., Insulin Resistance is an Evolutionary Conserved Physiological Mechanism at the Cellular Level for Protection against Increased Oxidative Stress, BioEssays, 2007, vol. 29, pp. 811–818.

    Article  CAS  PubMed  Google Scholar 

  53. Kuznetsova, L.A., Fedin, A.N., Chistyakova, O.V., Plesneva, S.A., Shpakov, A.O., and Pertseva, M.N., About Participation of Adenylyl Cyclase Signaling Mechanism in Relaxing Effect of Relaxin and Insulin on Rat Muscles of Uterus and Trachea and on Human Myometrium, Ross. Fiziol. Zh. im. I.M. Sechenova, 2006, vol. 92, no. 7, pp. 863–871.

    CAS  PubMed  Google Scholar 

  54. Kuznetsova, L., Plesneva, S., Shpakov, A., and Per tseva, M., Functional Defects in Insulin and Relaxin Adenylyl Cyclase Signaling Systems in Myometrium of Pregnant Women with Type 1 Diabetes, Ann. N.Y. Acad. Sci., 2005, vol. 1041, pp. 446–448.

    Article  CAS  PubMed  Google Scholar 

  55. Plesneva, S.A., Kuznetsova, L.A., Shpakov, A.O., Sharova, T.S., and Pertseva, M.N., Adenylyl Cyclase Signaling Mechanisms of Action of Peptides of Insulin Superfamily and their Functional Disturbances in Myometrium of Pregnant Women in Type 2 Diabetes Mellitus, Ross. Fiziol. Zh. im. I.M. Sechenova, 2008, vol. 94, no. 10, pp. 1126–1136.

    CAS  PubMed  Google Scholar 

  56. Kuznetsova, L.A. and Chistyakova, O.V., Regulation of Activity of Glucose-6-Phosphate Dehydrogenase and Glycogen Synthase by Peptides of Insulin Superfamily in Myometrium of Pregnant Women and Its Disturbance in Different Types of Diabetes Mellitus, Biomed. Khimiya, 2009, vol. 55, no. 5, pp. 663–672.

    CAS  Google Scholar 

  57. Zhang, Z., Apse, K., Pang, J., and Stanton, R.C., High Glucose Inhibits Glucose-6-Phosphate Dehydrogenase via cAMP in Aortic Endothelial Cell, J. Biol. Chem., 2000, vol. 275, pp. 40 042–40 047.

    Article  CAS  Google Scholar 

  58. Pirola, L., Bonnafous, S., Johnston, A.M., Chaussade, C., Portis, F., and Van Obberghen, E., Phosphoinositide 3-Kinase-Mediated Reduction of In sulin Receptor Substrate-1/2 Protein Expression via Different Mechanisms Contributes to the Insulin-Induced Desensitization of Its Signaling Pathways in L6 Muscle Cells, J. Biol. Chem., 2003, vol. 278, pp. 15641–15651.

    Article  CAS  PubMed  Google Scholar 

  59. Jobgen, W.S., Fried, S.K., Fu, W.J., Meininger, C.J., and Wu, G., Regulatory Role for the Arginine-Nitric Oxide Pathway in Metabolism of Energy Substrates, J. Nutr. Biochem., 2006, vol. 17, pp. 571–588.

    Article  CAS  PubMed  Google Scholar 

  60. Murad, F., Discovery of Some of the Biological Effects of Nitric Oxide and Iits Role in Cell Signaling, Biosci. Rep., 2004, vol. 24, pp. 452–474.

    Article  PubMed  Google Scholar 

  61. Luckhart, S. and Riehle, M.A., The Insulin Signaling Cascade from Nematodes to Mammals: Insights into Innate Immunity of Anopheles mosquitoes to Malaria Parasite Infection, Dev. Comp. Immunol., 2007, vol. 31, pp. 647–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kim, S.J., Chun, J.Y., and Kim, M.S., Insulin Stimulates Production of Nitric Oxide via Erk in Osteoblast Cells, Biochem. Biophys. Res. Commun., 2000, vol. 278, pp. 712–718.

    Article  CAS  PubMed  Google Scholar 

  63. Muniyappa, R., Montagnani, M., Koh, K.K., and Quon, M.J., Cardiovascular Actions of Insulin, Endocr. Rev., 2007, vol. 28, pp. 463–491.

    Article  CAS  PubMed  Google Scholar 

  64. Kobzik, L., Stringer, B., Balligand, J.L., Reid, M.B., and Stamler, J.S., Endothelial Type Nitric Oxide Synthase in Skeletal Muscle Fibers: Mitochondrial Relationships, Biochem. Biophys. Res. Commun., 1995, vol. 211, pp. 375–381.

    Article  CAS  PubMed  Google Scholar 

  65. Yan, Z., Chen, Z., and Chen, Z., Modulation of Nitric Oxide Synthase Isoenzymes in Reperfused Skeletal Muscle, Chin. J. Traumatol., 2000, vol. 3, pp. 76–80.

    CAS  PubMed  Google Scholar 

  66. Kuznetsova, L.A., Chistyakova, O.V., Bondareva, V.M., Sharova, T.S., and Pertseva, M.N., Disturbance of Regulation by Hormones of Insulin Family of NO Synthase System in Rat Skeletal Muscles in Second Type Diabetes Induced by Streptozotocin, Dokl. Akad. Nauk, 2010, vol. 432, no. 5, pp. 705–707.

    Google Scholar 

  67. Kashyap, S.R., Roman, L.J., Lamont, J., Masters, B.S., Bajaj, M., Suraamornkul, S., Belfort, R., Berria, R., Kellogg, D.L., Jr., Liu, Y., and De-Fronzo, R.A., Insulin Resistance Is Associated with Impaired Nitric Oxide Synthase Activity in Skeletal Muscle of Type 2 Diabetic Subjects, J. Clin. Endocrinol. Metab., 2005, vol. 90, pp. 1100–1105.

    Article  CAS  PubMed  Google Scholar 

  68. Shpakov, A.O. and Pertseva, M.N., Molecular Grounds of Functional Coupling of Proteins-Components of Insulin Signaling System, Usp. Biol. Khim., 1999, vol. 39, pp. 141–186.

    CAS  Google Scholar 

  69. Pertseva, M.N. and Shpakov, A.O., Conservatism of Insulin Signaling System in Evolution of Invertebrate and Vertebrate Animals, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, no. 5, pp. 430–441.

    CAS  PubMed  Google Scholar 

  70. Shipilov, V.N., Shpakov, A.O., and Rusakov, Yu.I., Pleiotropic Action of Insulin-Like Peptides of Mollusk Anodonta cygnea, Ann. N.Y. Acad. Sci., 2005, vol. 1040, pp. 464–465.

    Article  CAS  PubMed  Google Scholar 

  71. Shpakov, A.O., Shipilov, V.N., Bondareva, V.M., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Regulatory Action of Insulin-Related Neuropeptides of Mollusc Anodonta cygnea on Functional Activity of Adenylyl Cyclase Signaling System, Neurokhimiya, 2005, vol. 22, no. 1, pp. 28–37.

    Google Scholar 

  72. Kuznetsova, L.A., Plesneva, S.A., Chistyakova, O.V., Shpakov, A.O., Bondareva, V.M., and Pertseva, M.N., Streptozotocin Model of Diabetes Mellitus in Mollusc Anodonta cygnea: Functional State of the Adenylyl Cyclase Signaling Mechanism of Action of Peptides of Insulin Superfamily and Their Effect on Carbohydrate Metabolism Enzymes, Zh. Evol. Biokhim. Fiziol., 2007, vol. 43, no. 6, pp. 460–467.

    CAS  PubMed  Google Scholar 

  73. Shpakov, A.O., Kuznetsova, L.A., Plesneva, S.A., and Pertseva, M.N., Dynamics of Changes of Functional State of Hormone-Sensitive Adenylyl Cyclase System in Tissues of Gastropod Molluscs with Different Terms of Streptozotocin Diabetes Model, Byull. Eksper. Biol. Med., 2008, vol. 146, no. 10, pp. 404–408.

    Google Scholar 

  74. Shpakov, A.O., Signal Molecules of Bacteria of Nonpeptide Nature of QS-Type, Mikrobiologiya, 2009, vol. 78, no. 2, pp. 163–175.

    CAS  Google Scholar 

  75. Shpakov, A.O., Peptide Autoinductors of Bacteria, Mikrobiologiya, 2009, vol. 78, no. 3, pp. 291–303.

    CAS  Google Scholar 

  76. Goberdhan, D.C. and Wilson, C., The Functions of Insulin Signaling: Size Isn’t Everything, Even in Drosophila, Differentiation, 2003, vol. 71, pp. 375–397.

    Article  CAS  PubMed  Google Scholar 

  77. Park, J., Kim, Y., and Chung, J., Mitochondrial Dysfunction and Parkinson’s Disease Genes: Insights from Drosophila, Dis. Model Mech., 2009, vol. 2, pp. 336–340.

    Article  CAS  PubMed  Google Scholar 

  78. Roeder, T., Isermann, K., and Kabesch, M., Drosophila in Asthma Research, Am. J. Respir. Crit. Care Med., 2009, vol. 179, pp. 979–983.

    Article  CAS  PubMed  Google Scholar 

  79. Seugnet, L., Suzuki, Y., Thimgan, M., Donlea, J., Gimbel, S.I., Gottschalk, L., Duntley, S.P., and Shaw, P.J., Identifying Sleep Regulatory Genes Using a Drosophila Model of Insomnia, J. Neurosci., 2009, vol. 29, pp. 7148–7157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.N. Pertseva, L.A. Kuznetsova, A.O. Shpakov, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 5, pp. 313–322.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertseva, M.N., Kuznetsova, L.A. & Shpakov, A.O. New conceptual approach for search for molecular causes of diabetus mellitus, based on study of functioning of hormonal signaling systems. J Evol Biochem Phys 49, 457–468 (2013). https://doi.org/10.1134/S0022093013050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013050010

Key words

Navigation