Skip to main content
Log in

Mixotrophy in microorganisms: Ecological and cytophysiological aspects

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Mixotrophy is the ability to combine autotrophic and heterotrophic modes of nutrition. It is widely spread in a variety of microorganisms including such important plankton groups as dinoflagellates and cyanobacteria. In marine ecosystems, mixotrophy complicates our concept of the flow of materials and energy and therefore has been thoroughly studied for recent decades. Nevertheless, the exact data on the auto/heterotrophy balance during mixotrophic growth are still lacking, mainly due to insufficient knowledge of physiological and molecular grounds of this phenomenon. In this review, we address the ecological and cytophysiological aspects of the problem of mixotrophy in microorganisms as well as discuss possible causes of the relatively slow progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caron, D.A., Worden, A.Z., Countway, P.D., Demir, E., and Heidelberg, K.B., Protists Are Microbes Too: a Perspective, The ISME J., 2009, vol. 3, pp. 4–12.

    Article  CAS  Google Scholar 

  2. Telesh, I., Postel, L., Heerkloss, R., Mironova, E., and Skarlato, S., Zooplankton of the Open Baltic Sea: Extended Atlas, BMB Publ 21, Meereswiss ber Warnemünde, 2009, vol. 76, pp. 1–290.

    Google Scholar 

  3. Zengler, K., Central Role of the Cell in Microbial Ecology, Microbiol. Molec. Biol. Rev., 2009, vol. 73, pp. 712–729.

    Article  CAS  Google Scholar 

  4. Falkowski, P.G., The Power of Plankton, Nature, 2012, vol. 483, pp. S17–S20.

    Article  PubMed  CAS  Google Scholar 

  5. Canfield, D.E., Thamdrup, B., and Kristensen, E., Aquatic Geomicrobiology, Elsevier Academic Press, 2005.

    Google Scholar 

  6. Jones, R.I., Mixotrophy in Planktonic Protists as a Spectrum of Nutritional Strategies, Marine Microb. Food Webs, 1994, vol. 8, pp. 87–96.

    Google Scholar 

  7. Sanders, R.W., Mixotrophic Protists in Marine and Freshwater Ecosystems, J. Eukaryot. Microbiol., 1997, vol. 38, pp. 76–81.

    Google Scholar 

  8. Esteban, G.F., Fenchel, T., and Finlay, B.J., Mixotrophy in Ciliates, Protist., 2010, vol. 161, pp. 621–641.

    Article  PubMed  CAS  Google Scholar 

  9. Sanders, R.W., Alternative Nutritional Strategies in Protists: Symposium Introduction and a Review of Freshwater Protists that Combine Photosynthesis and Heterotrophy, J. Eukaruot. Microbiol., 2011, vol. 58, pp. 181–184.

    Article  Google Scholar 

  10. Jones, R.I., Mixotrophy in Planktonic Protists: an Overview, Freshwater Biol., 2000, vol. 45, pp. 219–226.

    Article  Google Scholar 

  11. Glibert, P.M. and Legrand, C., The Diverse Nutrient Strategies of Harmful Algae: Focus on Osmotrophy, Ecology of Harmful Algae. Ecological Studies, Granéli, E. and Turner, J., Eds., Springer-Verlag, Heidelberg, 2006, vol. 189, pp. 81–93.

    Google Scholar 

  12. Stoecker, D.K., Mixotrophy among Dinoflagellates, J. Eukaryot. Microbiol., 1999, vol. 46, pp. 397–401.

    Article  Google Scholar 

  13. Hinder, S.L., Hays, G.C., Edwards, M., Roberts, E.C., Walne, A.W., and Gravenor, M.B., Changes in Marine Dinoflagellate and Diatom Abundance under Climate Change, Nature Climate Change, 2012, vol. 2, pp. 271–275.

    Article  Google Scholar 

  14. Mironova, E.I., Telesh, I., and Skarlato, S.O., Diversity and Seasonality in Structure of Ciliate Communities in the Neva Estuary (Baltic Sea), J. Plankton Res., 2012, vol. 34, pp. 208–220.

    Article  CAS  Google Scholar 

  15. Stoecker, D.K., Johnson, M.D., de Vargas, C., and Not, F., Acquired Phototrophy in Aquatic Protists, Aquat. Microb. Ecol., 2009, vol. 57, pp. 279–310.

    Article  Google Scholar 

  16. Hansen, P.J., Skovgaard, A., Glud, R.N., and Stoecker, D.K., Physiology of the Mixotrophic Dinoflagellate Fragilidium subglobosum. II. Effects of Time Scale and Prey Concentration on Photosynthetic Performance, Marine Ecol. Progr. Series, 2000, vol. 201, pp. 137–146.

    Article  Google Scholar 

  17. Jeong, H.J., Yoo, Y.D., Seong, K.A., Kim, J.H., Park, J.Y., Kim, S., Lee, S.H., Ha, J.H., and Yih, W.H., Feeding by the Mixotrophic Red-Tide Dinoflagellate Gonyaulax polygramma: Mechanisms, Prey Species, Effects of Prey Concentration, and Grazing Impact, Aquat. Microb. Ecol., 2005, vol. 38, pp. 249–257.

    Article  Google Scholar 

  18. Yoo, Y.D., Jeong, H.J., Kim, M.S., Kang, N.S., Song, J.Y., Shin, W., Kim, K.Y., and Lee, K., Feeding by Phototrophic Red-Tide Dinoflagellates on the Ubiquitous Marine Diatom Skeletonema costatum, J. Eukaryot. Microbiol., 2009, vol. 56, pp. 413–420.

    Article  PubMed  Google Scholar 

  19. Kang, N.S., Jeong, H.J., Moestrup, O., Shin, W., Nam, S.W., Park, J.Y., De Salas, M., Kim, K.W., and Noh, J.H., Description of a New Planktonic Mixotrophic Dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the Coastal Waters off Western Korea: Morphology, Pigments, and Ribosomal DNA Gene Sequence, J. Eukaryot. Microbiol., 2010, vol. 57, pp. 121–144.

    Article  PubMed  CAS  Google Scholar 

  20. Kang, N.S., Jeong, H.J., Yoo, Y.D., Yoon, E.Y., Lee, K.H., Lee, K., and Kim, G., Mixotrophy in the Newly Described Phototrophic Dinoflagellate Woloszynskia cincta from Western Korean Waters: Feeding Mechanism, Prey Species and Effect of Prey Concentration, J. Eukaryot. Microbiol., 2011, vol. 58, pp. 152–170.

    Article  PubMed  CAS  Google Scholar 

  21. Jeong, H.J., Mixotrophy in Red Tide Algae Raphidophytes, J. Eukaryot. Microbiol., 2011, vol. 58, pp. 215–222.

    Article  PubMed  Google Scholar 

  22. Li, A., Stoecker, D.K., and Coats, D.W., Use of the “Food Vacuole Content” Method to Estimate Grazing by the Mixotrophic Dinoflagellate Gyrodinium galatheanum on Cryptophytes, J. Plankton Res., 2001, vol. 23, pp. 303–318.

    Article  Google Scholar 

  23. Moorthi, S., Caron, D.A., Gast, R.J., and Sanders, R.W., Mixotrophy: a Widespread and Important Ecological Strategy for Planktonic and Sea-Ice Nanoflagellates in the Ross Sea, Antarctica, Aquat. Microb. Ecol., 2009, vol. 54, pp. 269–277.

    Article  Google Scholar 

  24. Caron, D.A., Sanders, R.W., Lim, E.L., Marrase, C., Amaral, L.A., Whitney, S., Aoki, R.B., and Porter, K.G., Light-Dependent Phagotrophy in the Freshwater Mixotrophic Chrysophyte Dinobryon cylindricum, Microb. Ecol., 1993, vol. 25, pp. 93–111.

    Article  Google Scholar 

  25. Li, A., Stoecker, D.K., Coats, D.W., and Adam, E.J., Ingestion of Fluorescently Labeled and Phycoerythrin-Containing Prey bu Mixotrophic Dinoflagellates, Aquat. Microb. Ecol., 1996, vol. 10, pp. 139–147.

    Article  Google Scholar 

  26. Medina-Sanchez, J.M., Delip, M., and Casamayor, E.O., Catalized Reported Deposition-Fluorescence in situ Hybridization Protocol to Evaluate Phagotrophy in Mixotrophic Protists, Appl. Envir. Microbiol., 2005, vol. 71, pp. 7321–7326.

    Article  CAS  Google Scholar 

  27. Adolf, J.E., Stoecker, D.K., and Harding, L.W., The Balance of Autotrophy and Heterotrophy during Mixotrophic Growth of Karlodinium micrum (Dinophyceae), J. Plankton Res., 2006, vol. 28, pp. 737–751.

    Article  CAS  Google Scholar 

  28. Gisselson, L., Carlsson, P., Graneli, E., and Pallon, J., Dinophysis Blooms in the Deep Euphotic Zone of the Baltic Sea: Do They Grow in the Dark?, Harmf. Algae, 2002, vol. 1, pp. 401–418.

    Article  Google Scholar 

  29. Mulholland, M.R., Boneillo, G., and Minor, E.C., A Comparison of N and C Uptake during Brown Tide (Aureococcus anophagefferens) Blooms from Two Coastal Bays on the East Coast of the USA, Harmf. Algae, 2004, vol. 3, pp. 361–376.

    Article  CAS  Google Scholar 

  30. Hansen, P.J. and Nielsen, T.G., Mixotrophic Feeding of Fragilidium subglobosum (Dinophyceae) on Three Species of Ceratium: Effects of Prey Concentration, Prey Species and Light Intensity, Marine Ecol. Progr. Series, 1997, vol. 147, pp. 187–196.

    Article  Google Scholar 

  31. Li, A., Stoecker, D.K., and Coats, D.W., Mixotrophy in Gyrodinium galatheanum (Dinophyceae): Grazing Responces to Light Intensity and Inorganic Nutriens, J. Phycol., 2000, vol. 36, pp. 33–45.

    Article  CAS  Google Scholar 

  32. Stoecker, D.K., Li, A., Coats, D.W., Gustafson, D.E., and Nannen, M.K., Mixotrophy in the Dinoflagellate Prorocentrum minimum, Marine Ecol. Progr. Series, 1997, vol. 152, pp. 1–12.

    Article  Google Scholar 

  33. Burkholder, J.M., Glibert, P.M., and Skelton, H.M., Mixotrophy, a Major Mode of Nutrition for Harmful Algal Species in Eutrophic Waters, Harmful Algae, 2008, vol. 8, pp. 77–93.

    Article  CAS  Google Scholar 

  34. Skovgaard, A., Mixotrophy in Fragilidium subglobosum (Dinophyceae): Growth and Grazing Responses as Functions of Light Intensity, Marine Ecol. Progr. Series, 1996, vol. 143, pp. 247–253.

    Article  Google Scholar 

  35. Jeong, H.J., Shim, J.H., Kim, J.S., Park, J.Y., Lee, C.W., and Lee, Y., Feeding by the Mixotrophic Thecate Dinoflagellate Fragilidium cf. Mexicanum on Red-Tide and Toxic Dinoflagellates, Marine Ecol. Progr. Series, 1999, vol. 176, pp. 263–277.

    Article  Google Scholar 

  36. Ilyash, L.V., Relationship between Photosynthetic Activity and Assimilation of Organic Matter in Marine Plankton Mixotrophic Algae-the Possibility of Different Metabolic Strategies, Zh. Obshch. Biol., 2002, vol. 63, pp. 407–417.

    CAS  Google Scholar 

  37. Solomon, C.M., Collier, J.L., Berg, G.M., and Glibert, P.M., Role of Urea in Microbial Metabolism in Aquatic Systems: a Biochemical and Molecular Review, Aquat. Microb. Ecol., 2010, vol. 59, pp. 67–88.

    Article  Google Scholar 

  38. Capone, D.G., The Marine Nitrogen Cycle, Microbial Ecology of the Oceans, Kirchman, D. and Wiley-Liss, L., Eds., New York, 2000, pp. 455–493.

    Google Scholar 

  39. Leftley, J.W., and Syrett, P.J., Urease and ATP: Urea Amidolyase Activity in Unicellular Algae, J. Gen. Microbiol., 1973, vol. 77, pp. 109–115.

    Article  CAS  Google Scholar 

  40. Mobley, H.L.T. and Hausinger, R.P., Microbial Ureases: Significance, Regulation, and Molecular Characterization, Microb. Rev., 1989. vol. 53, pp. 85–108.

    CAS  Google Scholar 

  41. Stoecker, D.K. and Gustafson, D.E., Cell-Surface Proteolytic Activity of Photosynthetic Dinophlagellates, Aquat. Microb. Ecol., 2003, vol. 30, pp. 175–183.

    Article  Google Scholar 

  42. Salerno, M. and Sroecker, D.K., Ectocellular Glucosidase and Peptidase Activity of the Mixotrophic Dinoflagellate Prorocentrum minimum (Dinophyceae), J. Phycol., 2009, vol. 45, pp. 34–45.

    Article  CAS  Google Scholar 

  43. Raven, J.A., Phagotrophy in Phototrophs, Limnol. Oceanogr., 1997, vol. 42, pp. 198–205.

    Article  CAS  Google Scholar 

  44. Stoecker, D.K., Conceptual Models of Mixotrophy in Planktonic Protists and Some Ecological and Evolutionary Implications, Eur. J. Protistol. 1998, vol. 34, pp. 281–290.

    Article  Google Scholar 

  45. Skovgaard, A., A Phagotrophically Derivable Growth Factor in the Plastidic Dinoflagellate Gyrodinium resplendens (Dinophyceae), J. Phycol., 2000, vol. 36, pp. 1069–1078.

    Article  Google Scholar 

  46. Jehmlich, N., Schmidt, F., Hartwich, M., von Bergen, M., Richnow, H., and Vogt, C., Incorporation of Carbon and Nitrogen Atoms into Proteins Measured by Protein-Based Stable Isotope Probing (Protein-SIP), Rapid Communic. Mass Spectrom., 2008, vol. 22, pp. 2889–2897.

    Article  CAS  Google Scholar 

  47. Pan, C., Fischer, C.R., Hyatt, D., Bowen, B.P., Hettich, R.L., and Banfield, J.F., Quantitative Tracking of Isotope Flows in Proteomes of Microbial Communities, Molec. Cell. Proteom., 2011, vol. 10, pp. 1–11.

    Google Scholar 

  48. Wang, W.H., Kohler, B., Cao, F.Q., and Liu, L.H., Molecular and Physiological Aspects of Urea Transport in Higher Plants, Plant Sci., 2008, vol. 175, pp. 467–477.

    Article  CAS  Google Scholar 

  49. Raunser, S., Mathai, J.C., Abeyrathne, P.D., Rice, A.J., Zeidel, M.L., and Walz, T., Oligomeric Structure and Functional Characterization of the Urea Transporter from Actinobacillus pleuropneumoniae, J. Mol. Biol., 2009, vol. 387, pp. 619–627.

    Article  PubMed  CAS  Google Scholar 

  50. Garcia-Fernandez, J.M., Hess, W.R., Houmard, J., and Partensky, F., Expression of the pbsA Gene in the Marine Oxyphotobacteria Prochlorococcus spp., Arch. Biochem. Biophys., 1998, vol. 359, pp. 17–23.

    Article  PubMed  CAS  Google Scholar 

  51. Gomez-Baena, G., Lopez-Lozano, A., Gil-Martinez, J., Lucena, J.M., Diez, J., Candau, P., and Garcia-Fernandez, J.M., Glucose Uptake and Its Effect on Gene Expression in Prochlorococcus, PLoS ONE, 2008, vol. 3, pp. 1–11.

    Article  Google Scholar 

  52. Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, M.J., Nie, Z., and Qiu, G., The Effect of Mixotrophy on Microalgal Growth, Lipid Content, and Expression Levels of Three Pathway Genes in Chlorella sorokiniana, Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 835–844.

    Article  PubMed  CAS  Google Scholar 

  53. Xu, F., Hu, H., Cong, W., Cai, Z., and Ouyang, F., Growth Characteristics and Eicosapentaenoic Acid Production by Nannochloropsis sp. in Mixotrophic Conditions, Biotechnol. Lett., 2004, vol. 1, pp. 51–53.

    Article  Google Scholar 

  54. Martinez, F. and Orus, M.I., Interactions between Glucose and Inorganic Metabolism in Chlorella vulgaris Strain UAM 101, Plant Physiol., 1991, vol. 95, pp. 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  55. Marquez, F., Sasaki, K., Kakizono, T., Nishio, N., and Nagai, S., Growth Characteristics of Spirulina platensis in Mixotrophic and Heterotrophic Conditions, J. Ferment. Bioeng., 1993, vol. 76, pp. 408–410.

    Article  CAS  Google Scholar 

  56. Shim, J., Klochkova, T.A., Han, J.W., Kim, G.H., Yoo, Y.D., and Jeong, H.J., Comparative Proteomics of the Mixotrophic Dinoflagellate Prorocentrum micans Growing in Different Trophic Modes, Algae, 2011, vol. 26, pp. 87–96.

    Article  Google Scholar 

  57. Kim, G.H., Shim, J.B., and Klochkova, T.A., The Utility of Proteomica in Algal Taxonomy: Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) as a Model Study, J. Phycol., 2008, vol. 44, pp. 1519–1528.

    Article  CAS  Google Scholar 

  58. Ermilova, E.V., Molekulyarnye aspekty adaptatsii prokariot (Molecular Aspects of Adaptation of Procaryot), Izd-vo SPbGU, 2007, 299 p.

    Google Scholar 

  59. Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, T., Asayama, M., Shirai, M., Kanehisa, M., Suzuki, I., Murata, N., and Tanaka, K., Positive Regulation of Sugar Catabolic Pathways in the Cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 Factor SigE, J. Biol. Chem., 2005, vol. 280, pp. 30 653–30 659.

    CAS  Google Scholar 

  60. Summerfield, T.C. and Sherman, L.A., Role of Sigma Factors in Controlling Global Gene Expression in Light/Dark Transitions in the Cyanobacterium Synechocystis sp. Strain PCC 6803, J. Bacteriol., 2001, vol. 189, pp. 7829–7840.

    Article  Google Scholar 

  61. Falkowski, P.G., Barber, R.T., and Smetacek, V., Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 1998, vol. 281, pp. 200–206.

    Article  PubMed  CAS  Google Scholar 

  62. Zehr, J.P. and Ward, B.B., Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms, Appl. Environ. Microbiol. 2002, vol. 68, pp. 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  63. Berman, T. and Bronk, D.A., Dissolved Organic Nitrogen: a Dynamic Participant in Aquatic Ecosystems, Aquat. Microb. Ecol., 2003, vol. 31, pp. 279–305.

    Article  Google Scholar 

  64. Muro-Pastor, M.I., Reyes, J.C., and Florencio, F.J., Cyanobacteria Perceive Nitrogen Status by Sensing Intracellular 2-Oxoglutarate Levels, J. Biol. Chem., 2001, vol. 276, pp. 38 320–38 328.

    CAS  Google Scholar 

  65. Herrero, A., Muro-Pastor, A.M., and Flores, E., Nitrogen Control in Cyanobacteria, J. Bacteriol., 2001, vol. 183, pp. 411–425.

    Article  PubMed  CAS  Google Scholar 

  66. Arcondeguy, T., Jack, R., and Merrick, M., PII Signal Transduction Proteins, Pivotal Players In Microbial Nitrogen Control, Microbiology and Molecular Biology Reviews, 2001, vol. 65, pp. 80–105.

    Article  PubMed  CAS  Google Scholar 

  67. Burillo, S., Luque, I., Fuentes, I., and Contrares, A., Interactions between the Nitrogen Signal Transduction Protein PII and N-Acetyl Glutamate Kinase in Organisms that Perform Oxygenic Photosynthesis, J. Bacteriol., 2004, vol. 186, pp. 3346–3354.

    Article  PubMed  CAS  Google Scholar 

  68. Espinosa, J., Forchhammer, K., Burillo, S., and Contreras, A., Interaction Network in Cyanobacterial Nitrogen Regulation: PipX, a Protein that Interacts in a 2-Oxoglutarate Dependent Manner with PII and NtcA, Mol. Microbiol., 2006, vol. 61, pp. 457–469.

    Article  PubMed  CAS  Google Scholar 

  69. Longhurst, A.R. and Harrison, W.G., The Biological Pump: Profiles of Plankton Production and Consumption in the Upper Ocean, Progr. Oceanogr., 2003, vol. 22, pp. 47–123.

    Article  Google Scholar 

  70. Jeong, H.J., Yoo, Y.D., Kim, J., Seong, K.A., Kang, N.S., and Kim, T.H., Growth, Feeding and Ecological Roles of the Mixotrophic and Heterotrophic Dinoflagellates in Marine Planktonic Food Webs, Ocean Sci. J., 2010, vol. 45, pp. 65–91.

    Article  CAS  Google Scholar 

  71. Cembella, A.D., Chemical Ecology of Eukaryotic Microalgae in Marine Ecosystems, Phycologia, 2003, vol. 42, pp. 420–447.

    Article  Google Scholar 

  72. Kudela, R.M., Lane, J.Q., and Cochlan, W.P., The Potential Role of Anthropogenically Derived Nitrogen in the Growth of Harmful Algae in California, USA, Harmful Algae, 2008, vol. 8, pp. 103–110.

    Article  CAS  Google Scholar 

  73. Hackett, J.D., Anderson, D.M., Erdner, D.L., and Bhattacharya, D., Dinoflagellates: a Remarkable Evolutionary Experiment, Am. J. Botany, 2004, vol. 91, pp. 1523–1534.

    Article  CAS  Google Scholar 

  74. McEwan, M., Humayun, R., Slamovits, C.H., and Keeling, P.J., Nuclear Genome Sequence Survey of the Dinoflagellate Heterocapsa triquetra, J. Eukaryot. Microbiol., 2008, vol. 55, pp. 530–535.

    Article  PubMed  CAS  Google Scholar 

  75. Wisecaver, J.H. and Hackett, J.D., Dinoflagellate Genome Evolution, Annu. Rev. Microbiol., 2011, vol. 65, pp. 369–387.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matantseva.

Additional information

Original Russian Text © O.V. Matantseva, S.O. Skarlato, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 4, pp. 245–254.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matantseva, O.V., Skarlato, S.O. Mixotrophy in microorganisms: Ecological and cytophysiological aspects. J Evol Biochem Phys 49, 377–388 (2013). https://doi.org/10.1134/S0022093013040014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013040014

Key words

Navigation