Skip to main content
Log in

Formation of cortical inhibition in ontogenesis

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Analysis of the literature on the development of cortical inhibition suggests that synaptic inhibition of cerebral cortical neurons arises almost simultaneously with the onset of their background activity. All types of cortical inhibition operate simultaneously since the emergence of inhibitory processes. Thus, the basic mechanisms of cortical inhibition in mature cerebral cortex begin to function since cortex activation at the earliest stages of ontogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bursian, A.V., The Factors Determining the Specificity of Nervous Activity in Early Ontogenesis, Usp. Fiziol. Nauk, 1993, vol. 24, no. 2, pp. 3–19.

    PubMed  CAS  Google Scholar 

  2. Krein, S. Neirofiziologicheskie issledovaniya v culture tkani (Neurophysiological Studies in Tissue Culture), Moscow, 1980.

    Google Scholar 

  3. Aguilli, A., Schwartz, T.H., Kumar, V.S., Peterlin, Z.A., Tsiola, A., Soriano, E., and Yuste, R., Involvement of Cajal-Retzius Neurons in Spontaneous Correlated Activity of Embryonic and Postnatal Layer I from Wild-Type and Reeler Mice, J. Neurosci., 1999, vol. 19, pp. 10856–10868.

    Google Scholar 

  4. Alcántara, S. and Ferrer, I., Postnatal Development of Parvalbumin Immunoreactivity in the Cerebral Cortex of the Cat, J. Compar. Neurol., 2004, vol. 348, pp. 133–149.

    Article  Google Scholar 

  5. Kim, H.G., Fox, K., and Connors, B.W., Properties of Excitatory Synaptic Events in Neurons of Primary Somatosensory Cortex of Neonatal Rats, Cereb. Cortex, 1995, vol. 5, pp. 148–157.

    Article  PubMed  CAS  Google Scholar 

  6. Kostović, I., Judaš, M., and Sedmak, G., Developmental History of the Subplate Zone, Subplate Neurons and Interstitial White Matter Neurons: Relevance for Schizophrenia, Inter. J. Dev. Neurosci., 2011, vol. 29, pp. 193–205.

    Article  Google Scholar 

  7. Kotak, V.C., Péndola, L.M., and Rodríguez-Contreras, A., Spontaneous Activity in the Developing Gerbil Auditory Cortex in vivo Involves GABA-ergic Transmission, Epilepsia, 2011, vol. 52, pp. 1532–1543.

    Article  Google Scholar 

  8. Massengill, J.L., Smith, M.A., Son, D.I., and O’Dovd, D.K., Differential Expression of K4-AP Currents and Kv3.1 Potassium Channel Transcripts in Cortical Neurons That Develop Distinct Firing Phenotypes, J. Neurosci., 1997, vol. 17, pp. 3136–3147.

    PubMed  CAS  Google Scholar 

  9. Opitz, T., De Lima, A.D., and Voigt, T., Spontaneous Development of Synchronous Oscillatory Activity during Maturation of Cortical Networks in vitro, J. Neurophysiol., 2002, vol. 88, pp. 2196–2206.

    Article  PubMed  CAS  Google Scholar 

  10. Owens, D.F., Liu, X., and Kriegstein, A.R., Changing Properties of GABAA-Receptor Mediated Signaling during Early Neocortical Development, J. Neurophysiol., 1999, vol. 82, pp. 570–583.

    PubMed  CAS  Google Scholar 

  11. Petanjek, Z., Berger, B., and Esclapez, M., Origins of Cortical GABA-ergic Neurons in the Cynomolgus Monkey, Cereb. Cortex, 2009, vol. 19, pp. 249–262.

    Article  PubMed  Google Scholar 

  12. Sutor, B. and Luhmann, H.J., Development of Excitatory and Inhibitory Postsynaptic Potentials in the Rat Neocortex, Perspec. Dev. Neurobiol., 1995, vol. 2, pp. 409–419.

    CAS  Google Scholar 

  13. Vanhatalo, S., Palva, J.M., Andersson, S., Rivera, C., Voipio, J., and Kaila, K., Slow Endogenous Activity Transients and Developmental Expression of K+-Cl-Cotransporter 2 in the Immature Human Cortex, Eur. J. Neurosci., 2005, vol. 22, pp. 2799–2804.

    Article  PubMed  Google Scholar 

  14. Yan, X.X., Zheng, D.S., and Garey, L.J., Prenatal Development of GABA-Immunoreactive Neurons in the Human Striate Cortex, Dev. Brain Res., 1992, vol. 65, pp. 191–204.

    Article  CAS  Google Scholar 

  15. Cobas, A. and Fairén, A., GABA-ergic Neurons of Different Morphological Classes Are Cogenerated in the Mouse Barrel Cortex, J. Neurocytol., 1988, vol. 17, pp. 511–519.

    Article  PubMed  CAS  Google Scholar 

  16. Del Rio, J.A., Soriano, E., and Ferrer, I., Development of GABA-Immunoreactivity in the Neocortex of the Mouse, J. Comp. Neurol., 1992, vol. 326, pp. 501–526.

    Article  PubMed  Google Scholar 

  17. Nery, S., Fishell, G., and Corbin, J.G., The Caudal Ganglionic Eminence Is a Source of Distinct Cortical and Subcortical Cell Populations, Nature Neurosci., 2002, vol. 12, pp. 1279–1287.

    Article  Google Scholar 

  18. Xu, G., Broadbelt, K.G., Haynes, R.L., Folkerth, R.D., Borenstein, N.S., Belliveau, R.A., Trachtenberg, F.L., Volpe, J.J., and Kinney, H.C., Late Development of the GABA-ergic System in the Human Cerebral Cortex and White Matter, J. Neuropathol. Exp. Neurol., 2011, vol. 70, pp. 841–858.

    Article  PubMed  CAS  Google Scholar 

  19. Hayashi, K., Kawai-Hirai, R., Harada, A., and Takata, K., Inhibitory Neurons from Fetal Rat Cerebral Cortex Exert Delayed Axon Formation and Active Migration in vitro, Cell Sci., 2003, vol. 116, pp. 4419–4428.

    Article  CAS  Google Scholar 

  20. Van Ooyen, A., Van Pelt, J., and Corner, M.A., Implications of Activity Dependent Neurite Outgrowth for Neuronal Morphology and Network Development, Theoret. Biol., 1995, vol. 172, pp. 63–82.

    Article  Google Scholar 

  21. Benítez-Díaz, P., Miranda-Contreras, L., Peña-Contreras, Z., Dávila-Vera, D., Mendoza-Briceño, R.V., and Palacios-Prü, E., Histotypic Mouse Parietal Cortex Cultures: Excitation/Inhibition Ratio and Ultrastructural Analysis, J. Neurosci. Methods, 2006, vol. 156, pp. 64–70.

    Article  PubMed  Google Scholar 

  22. Kanatani, S., Yozu, M., Tabata, H., and Nakajima, K., COUP-TFII Is Preferentially Expressed in the Caudal Ganglionic Eminence and Is Involved in the Caudal Migratory Stream, J. Neurosci., 2008, vol. 28, pp. 13582–13591.

    Article  PubMed  CAS  Google Scholar 

  23. Wonders, C.P., Taylor, L., Welagen, J., Mbata, I.C., Jenny, Z., Xiang, J.Z., and Anderson, S.A., A Spatial Bias for the Origins of Interneuron Subgroups within the Medial Ganglionic Eminence, Dev. Biol., 2008, vol. 314, pp. 127–136.

    Article  PubMed  CAS  Google Scholar 

  24. Kuriyama, K., Tomono, S., Kishi, M., Mukainaka, T., and Ohkuma, S., Development of GABA-ergic Neurons in Cerebral Cortical Neurons in Primary Culture, Brain Res., 1987, vol. 416, pp. 7–21.

    Article  PubMed  CAS  Google Scholar 

  25. Lo Turco, J.J., Owens, D.F., Heath, M.J., Davis, M.B., and Kriegstein, A.R., GABA and Glutamate Depolarize Cortical Progenitor Cells and Inhibit DNA Synthesis, Neuron, 1995, vol. 15, pp. 1287–1298.

    Article  Google Scholar 

  26. Micheva, K.D. and Beaulieu, C., Development and Plasticity of the Inhibitory Neocortical Circuitry with an Emphasis on the Rodent Barrel Field Cortex: a Review, Can. J. Physiol. Pharmac., 1997, vol. 75, pp. 470–478.

    Article  CAS  Google Scholar 

  27. Zielinski, B.S. and Hendrickson, A.E., Development of Synapses in Macaque Monkey Striate Cortex, Visual Neurosci., 1992, vol. 6, pp. 491–504.

    Article  Google Scholar 

  28. Ramon, Y., Cajal-Agueras, S., Contiamina, P., Parra, P., and Martinez-Millan, L., The Distribution of Somatostatin-Immunoreactive Neurons in the Visual Cortex of Adult Rabbits and during Postnatal Development, Brain Res., 1985, vol. 359, pp. 379–382.

    Article  Google Scholar 

  29. Shiosaka, S., Nakatsuki, K., and Sakanaka, M., Ontogeny of Somatostatin-Containing Neuron System of the Rat: Immunochemical Analysis. II. Forebrain and Diencephalon, J. Compar. Neurol., 1982, vol. 204, pp. 211–224.

    Article  CAS  Google Scholar 

  30. Schwartz, T.H., Rabinowitz, D., Unni, V., Kumar, V.S., Smetters, D.K., Tsiola, A., and Yuste, R., Networks of Coactive Neurons in Developing Layer I, Neuron, 1998, vol. 20, pp. 541–552.

    Article  PubMed  CAS  Google Scholar 

  31. Pfeffer, C.K., Stein, V., Keating, D.J., Maier, H., Rinke, I., Rudhard, Y., Hentschke, M., Rune, G.M., Jentsch, T.J., and Hubner, C.A., NKCC1-Dependent GABA-ergic Excitation Drives Synaptic Network Maturation during Early Hippocampal Development, J. Neurosci., 2009, vol. 29, pp. 3419–3430.

    Article  PubMed  CAS  Google Scholar 

  32. Luhmann, H.J. and Prince, D.A., Postnatal Maturation of the GABA-ergic System in Rat Neocortex, J. Neurophysiol., 1991, vol. 65, pp. 247–263.

    PubMed  CAS  Google Scholar 

  33. Gusev, A.G., Ontogenetic Formation of Vertical Organization of the Visual Cortex, Problemy vozrastnoi fiziologii. Sbornik nauchnykh trudov (Problems of Age Physiology. Collection of Scientific Works), Moscow, 1976. pp. 64–73.

    Google Scholar 

  34. Lenkov, D.I. and Vasilieva, L.A., Formation of Synaptic Processes in the Kitten Sensomotor Cortex, Neironnye mekhanizmy razvivayushchegosya mozga (Neuronal Mechanisms of Developing Brain), Moscow, 1979, pp. 110–125.

    Google Scholar 

  35. Purpura, D., Intracellular Studies of Synaptic Organization of the Mammalian Brain, Fiziologiya i farmakologiya sinapticheskoi peredachi (Physiology and Pharmacology of Synaptic Transduction), Leningrad, 1973, pp. 113–128.

    Google Scholar 

  36. Hull, C.D. and Fuller, D.R., Development of Postsynaptic Potentials Recorded from Immature Neurons in the Kitten Visual Cortex. Brain Mechanisms in Mental Retardation, Acad. Press, New York, 1975, pp. 179–184.

    Google Scholar 

  37. Komatsu, Y., Development of Cortical Inhibition in Kitten Striate Cortex Investigatiated by a Slice Preparation, Dev. Brain Res., 1983, vol. 8, pp. 136–139.

    Article  Google Scholar 

  38. Yamamoto, T., Samejima, A., and Oka, H., Response Properties of the Non-Pyramidal Tract Neuron in the Kitten Motor Cortex during Early Postnatal Development: an Intracellular HRD Study, Dev. Brain Res., 1986, vol. 29, pp. 275–281.

    Article  Google Scholar 

  39. Whalley, B.J. and Constanti, A., Developmental Changes in Presynaptic Muscarinic Modulation of Excitatory and Inhibitory Neurotransmission in Rat Pyriform Cortex in vitro: Relevance to Epileptiform Bursting Susceptibility, J. Neurosci., 2006, vol. 140, pp. 939–956.

    Article  CAS  Google Scholar 

  40. Dobrolyubov, V.Yu. and Suvorova, N.N., Early Postnatal Ontogenesis of the Cat Neocortical Fields, Neironnye mekhanizmy razvivayushchegosya mozga (Neuronal Mechanisms of Developing Brain), Moscow, 1979, pp. 144–159.

    Google Scholar 

  41. Nikitina, G.M., Aslanova, M.A., and Bogolepova, I.N., Functional and Morphological Characteristics of the Limbic Cortex Formation in Early Ontogenesis, Zh. Vyssh. Nerv. Deyat., 1977, vol. 27, pp. 1287–1295.

    CAS  Google Scholar 

  42. Tagiev, Sh.K., Dzhangirov, P.L., and Mamedov, Kh.B., The Background Bioelectrical Activity of the Rabbit Brain at Different Age Terms, Zh. Vyssh. Nerv. Deyat., 1982, vol. 32, pp. 560–562.

    Google Scholar 

  43. Farber, D.A., Beteleva, T.G., and Savchenko, E.I., Formation of Plastic Connections of the Visual System of Rabbits in Ontogenesis, Zh. Vyssh. Nerv. Deyat., 1985, vol. 36, pp. 520–527.

    Google Scholar 

  44. Corner, M.A. and Ramakers, G.J., Spontaneous Firing as an Epigenetic Factor in Brain Development-Physiological Consequences of Chronic Tetrodotoxin and Picrotoxin Exposure on Cultured Rat Neocortex Neurons, Dev. Brain Res., 1992, vol. 65, pp. 57–64.

    Article  CAS  Google Scholar 

  45. Budko, K.P. Raevskii, V.V., and Shuleikina, K.V., Action Potential in the Somatosensory Cortical Neurons in the 5–7-Day Old Kitten, Dokl. Akad. Nauk SSSR, 1982, vol. 267, pp. 228–230.

    PubMed  CAS  Google Scholar 

  46. Burgard, E.C. and Hablitz, J.J., Developmental Changes NMDA and Non-NMDA Receptor-Mediated Synaptic Potentials in Rat Neocortex, J. Neurophysiol., 1993, vol. 69, pp. 230–240.

    PubMed  CAS  Google Scholar 

  47. Turgeon, S.M. and Albin, R.L., Postnatal Ontogeny of GABAB Binding in Rat Brain, J. Neurosci., 1994, vol. 62, pp. 601–613.

    Article  CAS  Google Scholar 

  48. Flint, A.C., Maisch, U.S., and Kriegstein, A.R., Postnatal Development of Low [Mg2+] Oscillations in Neocortex, J. Neurophysiol., 1997, vol. 8, pp. 1990–1996.

    Google Scholar 

  49. Deza, L. and Eidelberg, E., Development of Cortical Electrical Activity in the Rat, J. Exp. Neurol., 1967, vol. 17, pp. 425–438.

    Article  CAS  Google Scholar 

  50. Guseynov, A.G., Mamedov, Kh.B., and Gaziev, A.G., Functinal Development of the Rabbit Sensomotor Cortex in Postnatal Ontogenesis, Sovremennye problemy sravnitel’noi fiziologii i biokhimii (Current Problems of Comparative Physiology and Biochemistry), Baku, 2002, pp. 198–201.

    Google Scholar 

  51. Miller, R., Theory of the Normal Waking EEG: From Single Neurones to Waveforms in the Alpha, Beta and Gamma Frequency Ranges, Inter. Psychophysiol., 2007, vol. 64, pp. 18–23.

    Article  Google Scholar 

  52. Picken, B.H.L. and Moody, W.J., Early Development of Voltage-Gated Ion Currents and Firing Properties in Neurons of the Mouse Cerebral Cortex, J. Neurophysiol., 2003, vol. 89, pp. 1761–1773.

    Article  Google Scholar 

  53. McCormick, D.A., Cortical and Subcortical Generators of Normal and Abnormal Rhythmicity, Inter. Rev. Neurobiol., 2002, vol. 49, pp. 99–114.

    Article  Google Scholar 

  54. Huang, Z.J. and Scheiffele, P., GABA and Neuroligin Signaling: Linking Synaptic Activity and Adhesion in Inhibitory Synapse Development, Current Opin. Neurobiol., 2008, vol. 18, pp. 77–83.

    Article  CAS  Google Scholar 

  55. Katagiri, H., Fagiolini, M., and Hensch, T.K., Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex, Neuron, 2007, vol. 53, pp. 805–812.

    Article  PubMed  CAS  Google Scholar 

  56. Kobayashi, M., Hamada, T., Kogo, M., Yanagawa, Y., Obata, K., and Kang, Y., Developmental Profile of GABAA-Mediated Synaptic Transmission in Pyramidal Cells of the Somatosensory Cortex, Eur. J. Neurosci., 2008, vol. 28, pp. 849–861.

    Article  PubMed  Google Scholar 

  57. Babmindra, V.P., Structural Providing of Diversities of Cortical Inhibition, Vsesoyuznaya konferentsiya po neironaukam (All-Russia Conference of Neurosciences), Kiev, 1988, pp. 174–175.

    Google Scholar 

  58. Batuev, A.S., Neurofiziologiya kory golovnogo mozga (Neurophysiology of the Cerebral Cortex), Leningrad, 1984.

    Google Scholar 

  59. Dammerman, R.S., Flint, A.C., Noctor, S., and Kriegstein, A.R., An Excitatory GABA-ergic Plexus in Developing Neocortical Layer I, J. Neurophysiol., 2000, vol. 84, pp. 428–434.

    PubMed  CAS  Google Scholar 

  60. Jacobs, E.C., Campagnoni, C., Kampf, K., Reyes, S.D., Kalra, V., Handley, V., Xie Yuan-Yun, Hong-Hu Y., Spreur, V., Fisher, R.S., and Campagnoni, A.T., Visualization of Corticofugal Projections during Early Cortical Development in a τ-GFP-Transgenic Mouse, Euro. J. Neurosci., 2007, vol. 25, pp. 17–30.

    Article  Google Scholar 

  61. Meyer, G. and Ferres-Torres, R., Postnatal Development of Non-Pyramidal Neuron in the Visual Cortex of the Cat, J. Comp. Neurol., 1984, vol. 228, pp. 226–244.

    Article  PubMed  CAS  Google Scholar 

  62. Stensaas, L.J., The Development of Hippocampal and Dorsolateral Pallial Regions of the Cerebral Hemisphere in Fetal Rabbits. VI. Ninety Millimeter Stage, Cortical Differentiation, J. Comp. Neurol., 1968, vol. 132, pp. 93–108.

    Article  PubMed  CAS  Google Scholar 

  63. Voigt, T., Opitz, T., and de Lima, A.D., Synchronous Oscillatory Activity in Immature Cortical Network Is Driven by GABA-ergic Preplate Neuron, J. Neurosci., 2001, vol. 21–22, pp. 8895–8905.

    Google Scholar 

  64. Ramakers, G.J., van Galtn, H., Feenstra, M.G., Corner, M.A., and Boer, G.J., Activity-Dependent Plasticity of Inhibitory and Excitatory Amino Acid Transmitter Systems in Cultured Rat Cerebral Cortex, Int. Dev. Neurosci., 1994, vol. 12, pp. 611–621.

    Article  CAS  Google Scholar 

  65. Clascue, F., Angelucci, A., and Sur, M., Layer-Specific Programs of Development in Neocortical Projection Neurons, Proc. Nat. Acad. Sci. USA, 1995, vol. 92, pp. 11145–11149.

    Article  Google Scholar 

  66. Sheth, A.N., McKee, M.L., and Bhide, P.G., The Sequence of Formation and Development of Corticostriate Connections in Mice, Dev. Neurosci., 1998, vol. 20, pp. 98–112.

    Article  PubMed  CAS  Google Scholar 

  67. Volokhov, A.A., Ocherki po fiziologii nervnoi sistemy v rannem ontogenese (Essays on Physiology of Nervous System in Early Ontogenesis), Leningrad, 1968.

    Google Scholar 

  68. Raevsky, V.V., Ontogenez mediatornykh sistem moz ga (Ontogenesis of the Brain Transmission Systems), Moscow, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Guseynov.

Additional information

Original Russian Text © A.G. Guseynov, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 3, pp. 180–186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guseynov, A.G. Formation of cortical inhibition in ontogenesis. J Evol Biochem Phys 49, 275–282 (2013). https://doi.org/10.1134/S0022093013030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013030018

Key words

Navigation