Cells in the system of multicelular organism from positions of non-linear dynamics


The organism physiological systems forming a hierarchic network with mutual dependence and subordination can be considered as systems with non-linear dynamics including positive and negative feedbacks. In the course of evolution there occurred selection of robust, flexible, modular systems capable for adaptive self-organization by non-linear interaction of components, which leads to formation of the ordered in space and time robust and plastic organization of the whole. Cells of multicellular organisms are capable for coordinated “social” behavior with formation of ordered cell assemblies, which provides a possibility of morphological and functional variability correlating with manifestations of the large spectrum of adaptive reactions. The multicellular organism is the multilevel system with hierarchy of numerous subsystems capable for adaptive self-organization; disturbance of their homeostasis can lead to pathological changes. The healthy organism regulates homeostasis, self-renewal, differentiation, and apoptosis of cells serving its parts and construction blocks by preserving its integrity and controlling behavior of cells. The systemic approach taking into account biological regularities of the appearance and development of functions in evolution of multicellular organisms opens new possibilities for diagnostics and treatment of many diseases.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kotolupov, V.A., The Illness (Morbus). New Biological Principles-Illness and Pharmacy, 3rd European Congress Achievements in Space Medicine into Health Care Practice and Industry (Berlin, September 28–30, 2005), Berlin-Adlershof, Kopie & Druck, 2005, pp. 170–176.

    Google Scholar 

  2. 2.

    Kotolupov, V.A. and Yakovenko, L.V., General Regularities of Living Systems Functioning: Systematic Approach to Biology and Medicine, Kosmicheskaya biologiya i aviakosmicheskaya meditsina. Materialy XIII konferentsii (Space Biology and Aerospace Medicine. Proceedings of XIII Conference), Grigoriev, A.I. and Ilyin, E.A., Eds., Moscow, Institute of Biomedical Problems of the Russian Academy of Science, 2006, pp. 153–154.

    Google Scholar 

  3. 3.

    Kotolupov, V.A. and Levchenko, V.F., “Zonal Model” of Description of Homeostasis, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 4, pp. 443–451.

    PubMed  CAS  Google Scholar 

  4. 4.

    Kotolupov, V.A. and Levchenko, V.F., Multifunctionality and Homeostasis. Regularities of the Organism Functioning Important for Maintenance of Homeostasis, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 2, pp. 244–250.

    Google Scholar 

  5. 5.

    Levchenko, V.F. and Kotolupov, V.A., Levels of Organization of Living Systems: Cooperons, Zh. Evol. Biokhim. Fiziol., 2010, vol. 46, no. 6, pp. 530–538.

    PubMed  CAS  Google Scholar 

  6. 6.

    Thom, R., Comments. A Dynamic Theory of Morphogenesis), Na puti k teoreticheskoi biologii. I. Prolegomeny (On the Way to Theoretical Biology. I. Prolegomena), Astaurov, B.L., Ed., Mir, Moscow, 1970, pp. 38–46, 145–156.

    Google Scholar 

  7. 7.

    Thom, R., Strukturnaya ustoychivost’ i morfogenez (Structural Stability and Morphogenesis), Logos, Moscow, 2002.

    Google Scholar 

  8. 8.

    Glass, L., Multistable Spatiotemporal Patterns of Cardiac Activity, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 10409–10410.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Goldberger, A.L., Complex Systems. Giles F. Filley Lecture, Proc. Amer. Thorac. Soc., 2006, vol. 3, pp. 467–471.

    Article  Google Scholar 

  10. 10.

    Deisboeck, T.S. and Couzin, I.D., Collective Behavior in Cancer Cell Populations, BioEssays, 2009, vol. 31, pp. 190–197.

    PubMed  Article  Google Scholar 

  11. 11.

    Varela, M., Ruiz-Esteban, R., and Mestre De Juan, M.J., Chaos, Fractals, and Our Concept of Disease, Perspect. Biol. Med., 2010, vol. 53, pp. 584–595.

    PubMed  Article  Google Scholar 

  12. 12.

    Bird, R.J., Chaos and Life. Complexity and Order in Evolution and Thought, New York, Columbia University, 2003.

    Google Scholar 

  13. 13.

    Isaeva, V.V., Sinergetika dlya biologov: vvodny kurs (Synergetics for Biologists: Introductive Course), Nauka, Moscow, 2005.

    Google Scholar 

  14. 14.

    Arnold, V.I., Teoriya katastrof (Catastrophe Theory), Nauka, Moscow, 2000.

    Google Scholar 

  15. 15.

    Mandelbrot, B.B., The Fractal Geometry of Nature, Freeman, New York, 1983.

    Google Scholar 

  16. 16.

    Isaeva, V.V., Fractal and Chaotic Patterns of Animals, Tr. Zool. Inst. RAN, 2009, suppl. 1, pp. 199–218.

    Google Scholar 

  17. 17.

    Goodwin, B.C., Temporal Organization and Disorganization in Organisms, Chronobiol. Internat., 1997, vol. 14, pp. 531–536.

    CAS  Article  Google Scholar 

  18. 18.

    Anafi, R.C. and Bates, J.H.T., Balancing Robustness against the Dangers of Multiple Attractors in a Hopfield-Type Model of Biological Attractors, PloS, 2010, vol. 5, e14413, pp. 1–7.

    Google Scholar 

  19. 19.

    Bub, G., Shrier, A., and Glass, L., Global Organization of Dynamics in Oscillatory Heterogeneous Excitable Media, Phys. Rev., 2005, vol. 94, pp. 028105-1–028105-4.

    Google Scholar 

  20. 20.

    Kauffman, S.A., The Origins of Order. Self-Organization and Selection in Evolution, New York, Oxford, Oxford University, 1993.

    Google Scholar 

  21. 21.

    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., and Bonabeau, E., Self-Organization in Biological Systems, Princeton University, Princeton, 2001.

    Google Scholar 

  22. 22.

    Kirschner, M.W. and Gerhart, J.C., The Plausibility of Life, New Haven and London, Yale University, 2005.

    Google Scholar 

  23. 23.

    Isaeva, V.V., Self-Organization in Biological Systems, Izvestiya RAN, Seriya biologich., 2012, no. 2, pp. 1–10.

    Google Scholar 

  24. 24.

    Misteli, T., The Concept of Self-Organization in Cellular Architecture, J. Cell Biol., 2001, vol. 155, pp. 181–185.

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Ventegodt, S., Hermansen, T.D., Flensborg-Madsen, T., Nielsen, M.L., Clausen, B., and Merrick, J., Human Development. IV: The Living Cell has Information-Directed Self-Organization, Sci. World J., 2006, vol. 6, pp. 1132–1138.

    CAS  Article  Google Scholar 

  26. 26.

    Pinot, M., Chesnel, F., Kubiak, J.Z., Arnal, I., Nedelec, F.J., and Gueroui, Z., Effects of Confinement on the Self-Organization of Microtubules and Motors, Curr. Biol., 2009, vol. 19. pp. 954–960.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Taboni, J., Self-Organization and Other Emergent Properties in a Simple Biological System of Microtubules, Complexus, 2006, vol. 3, pp. 200–210.

    Article  Google Scholar 

  28. 28.

    Samoilov, V.I. and Vasiliev, J.M., Mechanisms of Social Behavior of the Vertebrates Tissue Cells: Cultural Models, Zh. Obshch. Biol., 2009, vol. 70, pp. 239–244.

    PubMed  CAS  Google Scholar 

  29. 29.

    Johnson, B.R. and Lam, S.K., Self-Organization, Natural Selection, and Evolution: Cellular Hardware and Genetic Software, BioScience, 2010, vol. 60, pp. 879–885.

    Article  Google Scholar 

  30. 30.

    Isaeva, V.V., Presnov, E.V., and Chernyshev, A.V., Topological Patterns in Metazoan Evolution and Development, Bull. Mathemat. Biol., 2006, vol. 68, pp. 2053–2067.

    Article  Google Scholar 

  31. 31.

    Isaeva, V.V., Kasyanov, N.V., and Presnov, E.V., Analysis situs of Spatial-Temporal Architecture in Biological Morphogenesis, Progress in Mathematical Biology Research, Kelly, J.T., Ed., New York, Nova Science, 2008, pp. 141–189.

    Google Scholar 

  32. 32.

    Presnov, E., Isaeva, V., and Kasyanov, N., Topological Determination of Early Morphogenesis in Metazoa, Theory in Biosci., 2010, vol. 129, pp. 259–270.

    Article  Google Scholar 

  33. 33.

    Vasiliev, J.M., Reorganization of Cytoskeleton as a Basis of Morphogenesis, Ontogenez, 2007, vol. 38, no. 2, pp. 120–125.

    Google Scholar 

  34. 34.

    Isaeva, V.V., Kletkiv morfogeneze (Cells in Morphogenesis), Nauka, Moscow, 1994.

    Google Scholar 

  35. 35.

    Vasiliev, J.M. and Gelfand, I.M., Cell Search Migra tions in Normal Development and Carcinogenesis, Biokhimiya, 2006, vol. 71, no. 8, pp. 1030–1020.

    Google Scholar 

  36. 36.

    Spiegel, E. and Spiegel, M., Cell-Cell Interactions during Sea Urchin Morphogenesis, Developmental Biology: A Comprehensive Synthesis, New York, London, Plenum Press, 1986, vol. 2, pp. 195–240.

    Google Scholar 

  37. 37.

    Hinegardner, R.T., Morphology and Genetics of Sea Urchin Development, Amer. Zool., 1975, vol. 15, pp. 679–689.

    Google Scholar 

  38. 38.

    Isaeva, V.V., The Diversity of Ontogeneses in Animals with Asexual Reproduction and Plasticity of Early Development, Ontogenez, 2010, vol. 41, no. 5, pp. 340–352.

    PubMed  CAS  Google Scholar 

  39. 39.

    Tamura, M., Dan-Sohkawa, M., and Kaneko, H., Coelomic Pouch Formation in Reconstructing Embryos of the Starfish Asterina pectinifera, Develop. Growth Differ, 1998, vol. 40, pp. 567–575.

    CAS  Article  Google Scholar 

  40. 40.

    Waliszewski, P., and Konarski, J., Neuronal Differentiation and Synapse Formation Occur in Space and Time with Fractal Dimension, Synapse, 2002, vol. 43, pp. 252–258.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Dickson, B.J., Molecular Mechanisms of Axon Guidance, Science, 2002, vol. 298, no. 5600, pp. 1959–1964.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Barinaga, M., Synapses Call the Shots, Science, 2000, vol. 290, no. 5492, pp. 735–738.

    Article  Google Scholar 

  43. 43.

    Malevic-Savatic, M., Malinow, R., and Svoboda, K., Rapid Dendritic Morhogenesis in CA1 Hippocampal Dendrites Induced by Synaptic Activity, Science, 1999, vol. 283, pp. 1923–1926.

    Article  Google Scholar 

  44. 44.

    Erwin, D.H. and Davidson, E.H., The Evolution of Hierarchical Gene Regulatory Networks, Nature Rev. Genet., 2009, vol. 10, pp. 141–148.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Venter, J.C., Adams, M.D., Myers, E.W., et al., The Sequence of the Human Genome, Science, 2001, vol. 291, pp. 1304–1351.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Belousov, L.V., Osnovy obshchei embriologii (The Fundamentals of General Embryology), Izd. Mosk. Gos. Univ., Moscow, 2005.

    Google Scholar 

  47. 47.

    Ingber, D.E., Mechanical Control of Tissue Growth: Function Follows Form, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, pp. 11571–11572.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Farge, E., Mechanical Induction of Twist in the Drosophila Foregut/Stomodeal Primordium, Curr. Biol., 2003, vol. 13, pp. 1365–1377.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Janecka, I.P., Cancer Control through Principles of Systems Science, Complexity, and Chaos Theory: A Model, Int. J. Med Sci., 2007, vol. 4, pp. 164–173.

    PubMed  Article  Google Scholar 

  50. 50.

    Isaeva, V.V., Pluripotent Gametogenic Stem Cells of Asexually Reproducing Invertebrates, Embryonic Stem Cells-Basic Biology to Bioengineering, Kallos, M.S., Ed., Rijeka, Intech, 2011, pp. 449–478.

    Google Scholar 

  51. 51.

    Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L., Stem Cells, Cancer, and Cancer Stem Cells, Nature, 2001, vol. 414, pp. 106–111.

    Article  Google Scholar 

  52. 52.

    Alkatout, I. and Kalthoff, H., Tumor Stem Cells: How to Define Them and How to Find Them?, Stem Cells: From Hydra to Man, Bosch, T.C.G., Ed., Springer Science + Business Media B.V., 2008, pp. 165–185.

    Google Scholar 

  53. 53.

    Gould, S.J., The Structure of Evolutionary Theory, Cambridge, Massachusetts, London, England, The Belknap Press of Harvard University, 2002.

    Google Scholar 

  54. 54.

    Edelman, G.M., Neural Darwinism: Selection and Reentrant Signaling in Higher Brain Function, Neuron, 1993, vol. 10, pp. 115–125.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Saveliev, S.V., Proiskhozhdenie mozga (The Origin of Brain), Vedi, Moscow, 2005.

    Google Scholar 

  56. 56.

    Vasiliev, J.M., The Social Behavior of Normal Cells and Antisocial Behavior of Tumor Cells, Soros Obraz. Zh., 1997, no. 5, pp. 20–25.

    Google Scholar 

  57. 57.

    Rinkevich, B., Stem Cells: Autonomy Interactors That Emerge as Causal Agents and Legitimate Units of Selection, Stem Cells in Marine Organisms, Rinkevich, B. and Matranga, V., Eds., Springer, Dordrecht, Heidelberg, London, New York, 2009, pp. 1–20.

    Google Scholar 

  58. 58.

    Beklemeshev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnyh (Grounds of Comparative Anatomy of Invertebrates), Nauka, Moscow, 1964, vol. 1.

    Google Scholar 

  59. 59.

    Ashby, R., Konstruktsiya mozga (Design for a Brain), IL, Moscow, 1962.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. V. Isaeva.

Additional information

Original Russian Text © V.A. Kotolupov, V.V. Isaeva, 2012, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 5, pp. 517–526.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotolupov, V.A., Isaeva, V.V. Cells in the system of multicelular organism from positions of non-linear dynamics. J Evol Biochem Phys 49, 262–273 (2013). https://doi.org/10.1134/S0022093013020175

Download citation

Key words

  • homeostasis
  • non-linear dynamics
  • self-organization