Skip to main content
Log in

On epigenetic regulation of the process of formation of long-term memory

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review summarizes current concepts on the role of several covalent post-translational chromatin modifications during memory formation in vertebrates and invertebrates. It describes a sequence of intracellular events from activation of receptors and signal pathways up to changes in the functional state of genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

CBP:

CREB-binding protein

CREB:

cAMP responsive element binding protein

DNMT:

DNA methyltransferase

DNMT1:

DNA methyltransferase 1

DNMT3a:

DNA methyltransferase 3a

DNMT3b:

DNA methyltransferase 3b

EHMT:

euchromatin histone methyltransferase

Elk1:

E twenty-six (ETS)-like transcription factor 1

ERK:

extracellular signal-regulated kinase

H3S10ph:

histone H3 serine 10 phosphorylation

H3K4me:

histone H3 lysine 4 methylation

H3K9me:

histone H3 lysine 9 methylation

HAT:

histone-acetyltransferase

HDAC:

histone-deacetylase

HDAC2:

histone-deacetylase 2

Lys:

lysine

MAPK:

mitogen-activated protein kinase

MBD1:

methyl-CpG binding protein

Msk1:

mitogen- and stress-activated protein kinase 1

NMDA:

N-methyl-D-aspartate

PKA:

protein kinase A

PKC:

protein kinase C

PP1:

protein phosphatase 1

RSTS:

Rubinstein-Taybi syndrome

Ser:

serine

References

  1. Bailey, C.H., Kandel, E.R., and Si, K., The Persistence of Long-Term Memory: A Molecular Approach to Self-Sustaining Changes in Learning-Induced Synaptic Growth, Neuron, 2004, vol. 44, pp. 49–57.

    Article  PubMed  CAS  Google Scholar 

  2. McGaugh, J.L., Memory: A Century of Consolidation, Science, 2000, vol. 287, pp. 248–251.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, A., DNA Methylation Patterns and Epigenetic Memory, Genes Devel., 2002, vol. 16, pp. 6–21.

    Article  PubMed  CAS  Google Scholar 

  4. Haaf, T., Methylation Dynamics in the Early Mammalian Embryo: Implications of Genome Reprogramming Defects for Development, Curr. Top. Microbiol. Immunol., 2006, vol. 310, pp. 13–22.

    Article  PubMed  CAS  Google Scholar 

  5. Heard, E., and Disteche, C.M., Dosage Compensation in Mammals: Fine-Tuning the Expression of the X Chromosome, Genes Devel., 2006, vol. 20, pp. 1848–1867.

    Article  PubMed  CAS  Google Scholar 

  6. Ideraabdullah, F.Y., Vigneau, S., and Bartolomei, M.S., Genomic Imprinting Mechanisms in Mammals, Mutat Res., 2008, vol. 647, pp. 77–85.

    Article  PubMed  CAS  Google Scholar 

  7. Jenuwein, T. and Allis, C.D., Translating the Histone Code, Science, 2001, vol. 293, pp. 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  8. Levenson, J.M. and Sweatt, J.D., Epigenetic Mechanisms in Memory Formation, Nat. Rev. Neurosci., 2005, vol. 6, pp. 108–118.

    Article  PubMed  CAS  Google Scholar 

  9. Levenson, J.M. and Sweatt, J.D., Epigenetic Mechanisms: A Common Theme in Vertebrate and Invertebrate Memory Formation, Cell Mol. Life Sci., 2006, vol. 63, pp. 1009–1016.

    Article  PubMed  CAS  Google Scholar 

  10. Petrij, F., Giles, R.H., Dauwerse, H.G., Saris, J.J., Hennekam, R.C., Masuno, M., Tommerup, N., van Ommen, G.J., Goodman, R.H., and Peters, D.J., Rubinstein-Taybi Syndrome Caused by Mutations in the Transcriptional Co-Activator CBP, Nature, 1995, vol. 376, pp. 348–351.

    Article  PubMed  CAS  Google Scholar 

  11. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., and Nakatani, T., The Transcriptional Co-Activators p300 and CBP Are Histone Acetyltransferases, Cell, 1996, vol. 87, pp. 1107–1112.

    Article  Google Scholar 

  12. Alarcon, J.M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., and Barco, A., Chromatin Acetylation, Memory, and Ltp Are Impaired in cbp+/− Mice: Model for the Cognitive Deficit in Rubinstein-Taybi Syndrome and Its Amelioration, Neuron, 2004, vol. 42, pp. 947–959.

    Article  PubMed  CAS  Google Scholar 

  13. Oike, Y., Hata, A., Mamiya, T., Kaname, T., Noda, Y., and Suzuki, M., Truncated cbp Protein Leads to Classical Rubinstein-Taybi Syndrome Phenotype in Mice. Implications for a Dominant-Negative Mechanism, Hum. Mol. Genet., 1999, vol. 8, pp. 387–396.

    Article  PubMed  CAS  Google Scholar 

  14. Korzus, E., Rosenfeld, M.G., and Mayford, M., CBP Histone Acetyltransferase Activity Is a Critical Component of Memory Consolidation, Neuron, 2004, vol. 42, pp. 961–972.

    Article  PubMed  CAS  Google Scholar 

  15. Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M., Lombardi, T.L., and Abel, T., Transgenic Mice Expressing a Truncated Form of CREB-Binding Protein (CBP) Exhibit Deficits in Hippocampal Synaptic Plasticity and Memory Storage, Learn. Mem., 2005, vol. 12, pp. 111–119.

    Article  PubMed  Google Scholar 

  16. Oliveira, A.M., Wood, M.A., and McDonough, C.B., Transgenic Mice Expressing an Inhibitory Truncated Form of p300 Exhibit Long-Term Memory Deficits, Learn. Mem., 2007, vol. 14, pp. 564–572.

    Article  PubMed  CAS  Google Scholar 

  17. Gräff, J., Kim, D., Dobbin, M.M., and Tsai, L.-H., Epigenetic Regulation of Gene Expression in Physiological and Pathological Brain Processes, Physiol. Rev., 2011, vol. 91, pp. 603–649.

    Article  PubMed  Google Scholar 

  18. Levenson, J.M., O’Riordan, K.J., Brown, K.D., Trinh, M.A., Molfese, D.L., and Sweatt, J.D., Regulation of Histone Acetylation during Memory Formation in the Hippocampus, J. Biol. Chem., 2004, vol. 279, pp. 40 545–40 559.

    Article  CAS  Google Scholar 

  19. Igaz, L.M., Vianna, M.R., Medina, J.H., and Izquierdo, I., Two Time Periods of Hippocampal mRNA Synthesis Are Required for Memory Consolidation of Fear-Motivated Learning, J. Neurosci., 2002, vol. 22, pp. 6781–6789.

    PubMed  CAS  Google Scholar 

  20. Guan, J.S., Haggarty, S.J., Giacometti, E., Dannenberg, J.H., Joseph, N., Gao, J., Nieland, T.J., Zhou, Y., Wang, X., and Mazitschek, R., HDAC2 Negatively Regulates Memory Formation and Synaptic Plasticity, Nature, 2009, vol. 459, pp. 55–60.

    Article  PubMed  CAS  Google Scholar 

  21. Lattal, K.M., Barrett, R.M., and Wood, M.A., Systemic or Intrahippocampal Delivery of Histone Deacetylase Inhibitors Facilitates Fear Extinction, Behav. Neurosci.. 2007, vol. 121, pp. 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  22. Vecsey, C.G., Hawk, J.D., Lattal, K.M., Stein, J.M., Fabian, S.A., Attner, M.A., Cabrera, S.M., McDonough, C.B., Brindle, P.K., and Abel, T., Histone Deacetylase Inhibitors Enhance Memory and synaptic plasticity via CREB: CBPDependent Transcriptional Activation, J. Neurosci., 2007, vol. 27, pp. 6128–6140.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, G., Zou, X., Watanabe, H., van Deursen, J.M., and Shen, J., CREB Binding Protein is Required for both Short-Term and Long-Term Memory Formation, J. Neurosci., 2010, vol. 30, pp. 13066–13077.

    Article  PubMed  CAS  Google Scholar 

  24. Berger, S.L., The Complex Language of Chromatin Regulation during Transcription, Nature, 2007, vol. 447, pp. 407–412.

    Article  PubMed  CAS  Google Scholar 

  25. Chwang, W.B., O’Riordan, K.J., Levenson, J.M., and Sweatt, J.D., Erk/mapk Regulates Hippocampal Histone Phosphorylation Following Contextual Fear Conditioning, Learn. Mem., 2006, vol. 13, pp. 322–328.

    Article  PubMed  CAS  Google Scholar 

  26. Lubin, F.D. and Sweatt, J.D., The Ikappab Kinase Regulates Chromatin Structure during Reconsolidation of Conditioned Fear Memories, Neuron, 2007, vol. 55, pp. 942–957.

    Article  PubMed  CAS  Google Scholar 

  27. Gupta, S., Kim, S.Y., Artis, S., Molfese, D.L., Schumacher, A., and Sweatt, J.D., Histone Methylation Regulates Memory Formation, J. Neurosci., 2010, vol. 30, pp. 3589–3599.

    Article  PubMed  CAS  Google Scholar 

  28. Levenson, J.M., Choi, S., Lee, S.Y., Cao, Y.A., Ahn, H.J., Worley, K.C., Pizzi, M., Liou, H.C., and Sweatt, J.D., A Bioinformatics Analysis of Memory Consolidation Reveals Involvement of the Transcription Factor c-rel, J. Neurosci., 2004, vol. 24, pp. 3933–3943.

    Article  PubMed  CAS  Google Scholar 

  29. Ressler, K.J., Paschall, G., Zhou, X.L., and Davis, M., Regulation of Synaptic Plasticity Genes during Consolidation of Fear Conditioning, J. Neurosci., 2002, vol. 22, pp. 7892–7902.

    PubMed  CAS  Google Scholar 

  30. Bestor, T.H. and Ingram, V.M. Two DNA Methyltransferases from Murine Erythroleukemia Cells: Purification, Sequence Specificity, and Mode of Interaction with DNA, Proc. Nat. Acad. Sci. USA, 1983, vol. 80, pp. 5559–5563.

    Article  PubMed  CAS  Google Scholar 

  31. Okano, M., Bell, D.W., Haber, D.A., and Li, E., DNA Methyltransferases Dnmt3a and Dnmt3b are Essential for de novo Methylation and Mammalian Development, Cell, 1999, vol. 99, pp. 247–257.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao, X., Ueba, T., Christie, B.R., Barkho, B., McConnell, M.J., Nakashima, K., Lein, E.S., Eadie, B.D., Willhoite, A.R., Muotri, A.R., Summers, R.G., Chun, J., Lee, K.F., and Gage, F.H., Mice Lacking Methyl-CpG Binding Protein 1 Have Deficits in Adult Neurogenesis and Hippocampal Function, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, pp. 6777–6782.

    Article  PubMed  CAS  Google Scholar 

  33. Miller, C.A. and Sweatt, J.D., Covalent Modi cation of DNA Regulates Memory Formation, Neuron, 2007, vol. 53, pp. 857–869.

    Article  PubMed  CAS  Google Scholar 

  34. Lubin, F.D., Roth, T.L., and Sweatt, J.D., Epigenetic Regulation of BDNF Gene Transcription in the Consolidation of Fear Memory, J. Neurosci., 2008, vol. 28, pp. 10576–10586.

    Article  PubMed  CAS  Google Scholar 

  35. Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D., Silva, A.J., and Fan, G., Dnmt1 and Dnmt3a Maintain DNA Methylation and Regulate Synaptic Function in Adult Forebrain Neurons, Nat. Neurosci., 2010, vol. 13, pp. 423–430.

    Article  PubMed  CAS  Google Scholar 

  36. English, J.D. and Sweatt, J.D., A Requirement for the Mitogen-Activated Protein Kinase Cascade in Hippocampal Long Term Potentiation, J. Biol. Chem., 1997, vol. 272, pp. 19103–19106.

    Article  PubMed  CAS  Google Scholar 

  37. English, J.D. and Sweatt, J.D., Activation of p42 Mitogen-Activated Protein Kinase in Hippocampal Long Term Potentiation, J. Biol. Chem., 1996, vol. 271, pp. 24 329–24 332.

    CAS  Google Scholar 

  38. Atkins, C.M., Selcher, J.C., Petraitis, J.J., Trzaskos, J.M., and Sweatt, J.D., The MAPK Cascade is Required for Mammalian Associative Learning, Nat. Neurosci., 1998, vol. 1, pp. 602–609.

    Article  PubMed  CAS  Google Scholar 

  39. Brami-Cherrier, K., Lavaur, J., Pages, C., Arthur, J.S., and Caboche, J., Glutamate Induces Histone H3 Phosphorylation but not Acetylation in Striatal Neurons: Role of Mitogen- and Stress-Activated Kinase-1, J. Neurochem., 2007, vol. 101, pp. 697–708.

    Article  PubMed  CAS  Google Scholar 

  40. Brami-Cherrier, K., Roze, E., Girault, J.A., Betuing, S., and Caboche, J., Role of the ERK/MSK1 Signalling Pathway in Chromatin Remodelling and Brain Responses to Drugs of Abuse, J. Neurochem., 2009, vol. 108, pp. 1323–1335.

    Article  PubMed  CAS  Google Scholar 

  41. Reul, J.M., Hesketh, S.A., Collins, A., and Mecinas, M.G., Epigenetic Mechanisms in the Dentate Gyrus Act as a Molecular Switch in Hippocampus-Associated Memory Formation, Epigenetics, 2009, vol. 4, pp. 434–439.

    Article  PubMed  CAS  Google Scholar 

  42. Koshibu, K., Graff, J., Beullens, M., Heitz, F.D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., and Mansuy, I.M., Protein Phosphatase 1 Regulates the Histone Code for Long-Term Memory, J. Neurosci., 2009, vol. 29, pp. 13 079–13 089.

    Article  CAS  Google Scholar 

  43. Bredy, T.W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y.E., and Barad, M., Histone Modifications around Individual BDNF Gene Promoters in Prefrontal Cortex Are Associated with Extinction of Conditioned Fear, Learn Mem., 2007, vol. 14, pp. 268–276.

    Article  PubMed  CAS  Google Scholar 

  44. Miller, C.A., Campbell, S.L., and Sweatt, J.D., DNA Methylation and Histone Acetylation Work in Concert to Regulate Memory Formation and Synaptic Plasticity, Neurobiol. Learn. Mem., 2008, vol. 89, pp. 599–603.

    Article  PubMed  CAS  Google Scholar 

  45. Shevchenko, K.G., Danilova, A.B., and Grinkevich, L.N., Posttranslational Modification of Histone H3 in Memory Consolidation and Reconsolidation in the Mollusc Helix, Vestnik VOGiS, 2009, vol. 13, no. 4, pp. 723–730.

    Google Scholar 

  46. Federman, N., Fustinana, M.S., and Romano, A. Reconsolidation Involves Histone Acetylation Depending on the Strength of the Memory, Neuroscience, 2012, http:www.dx.doi.org/10.1016/j.neuroscience.2012.05.057

    Google Scholar 

  47. Kramer, J.M., Kochinke, K., Oortveld, M.A., Marks, H., Kramer, D., de Jong, E.K., Asztalos, Z., Westwood, J.T., Stunnenberg, H.G., Sokolowski, M.B., Keleman, K., Zhou, H., van Bokhoven, H., and Schenck, A., Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a, PLoS Biol., 2011, vol. 9. p. e1000569.

    Article  PubMed  CAS  Google Scholar 

  48. Hättig, J. and Müller, U., The Design of Neuronal Networks: Contributions from Invertebrates, PENS/Hertie Winter School, Obergurgl, Austria, 2008, p. 28.

    Google Scholar 

  49. Lockett, G.A., Helliwell, P., and Maleszka, R., Involvement of DNA Methylation in Memory Processing in the Honey Bee, Neuroreport, 2010, vol. 21, pp. 812–816.

    Article  PubMed  CAS  Google Scholar 

  50. Elango, N., Hunt, B.G., Goodisman, M.A.D., and Yi, S., DNA Methylation Is Widespread and Associated with Differential Gene Expression in Castes of the Honeybee, Apis mellifera, Proc. Nat. Acad. Sci. USA, 2009, vol. 106, pp. 11 206–11 211.

    CAS  Google Scholar 

  51. Suzuki, M.M., Kerr, A.R., De Sousa, D., and Bird, A., CpG Methylation Is Targeted to Transcription Units in an Invertebrate Genome, Genome Res., 2007, vol. 17, no. 5. pp. 625–631.

    Article  PubMed  CAS  Google Scholar 

  52. Feng, S., Cokus, S.J., Zhang, X., Chen, P.Y., and Bostick, M., Conservation and Divergence of Methylation Patterning in Plants and Animals, Proc. Nat. Acad. Sci. USA, 2010, vol. 107, pp. 8689–8694.

    Article  PubMed  CAS  Google Scholar 

  53. Zemach, A., McDaniel, I.E., Silva, P., and Zilberman, D., Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation, Science, 2010, vol. 328, pp. 916–919.

    Article  PubMed  CAS  Google Scholar 

  54. Li, B.Z., Huang, Z., Cui, Q.Y., Song, X.H., Du, L., Jeltsch, A., Chen, P., Li, G., Li, E., and Xu, G.L., Histone Tails Regulate DNA Methylation by Allosterically Activating de novo Methyltransferase, Cell Res., 2011, vol. 21, pp. 1172–1181.

    Article  PubMed  CAS  Google Scholar 

  55. Zachepilo, T.G., Vaido, A.I., Kamyshev, N.G., and Lopatina, N.G., Receptors of L-Glutamate and their Activated Signaling Pathways in Honeybee Head Ganglion under Conditions of Deficit of Tryptophan Kynurenine Metabolites, Mater. mezhdunar. Konf. “Retseptory i vnutrikletochnaya signalizatsiya”. Sbornik statei (Proceed. Internat. Conf. “Receptors and Intercellular Signalization”, Collection of Articles), Pushchino, 2011, p. 111.

    Google Scholar 

  56. Zachepilo, T.G. and Shvetsov, A.V., Phosphorylation of Histone H3 Participates in Honeybee Associative Learning, Med. Akadem. Zhurnal. Spetsvypusk, tez. dokl. Vseross. molodezhnoi konf.-shkoly “Neirobiologiya integrativnykh funktsii mozga” (Medical Acad. Jourmal, Special Issue: Proceed. Abstr. “Neurobiology of Integrative Brain Functions), St. Petersburg, 2011, pp. 26–27.

    Google Scholar 

  57. Shvetsov, A.V. and Zachepilo, T.G., Investigation of the Level of Histone H3 Lys4 Methylation in Honeybee Brain Neurons during Associative Learning, Tezisy dokl. XV Shkoly-konf. molodykh uchenykh po fiziologii vysshei nervnoi deyatel’nosti (Abstr. Proceed. XV School-Conf. Young Researchers on Physiology of the Higher Nervous Activity, Moscow, 2011, p. 45.

  58. Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F., and Vallortigara, G., Morpho-Functional Asymmetry of the Olfactory Receptors of the Honeybee (Apis mellifera), Behav. Brain Res., 2010, vol. 209, pp. 221–225.

    Article  PubMed  CAS  Google Scholar 

  59. Haase, A., Rigosi, E., Frasnelli, E., Trona, F., Tessarolo, F., Vinegoni, C., Anfora, G., Vallortigara, G., and Antolini, R., A Multimodal Approach for Tracing Lateralisation along the Olfactory Pathway in the Honeybee through Electrophysiological Recordings, Morpho-Functional Imaging, and Behavioural Studies, Europ. Biophys. J., 2011, vol. 40, pp. 1247–1258.

    Article  Google Scholar 

  60. Kharchenko, O.A., Grinkevich, V.V., Vorobiova, O.V., and Grinkevich, L.N., Learning-Induced Lateralized Activation of the MAPK/ERK Cascade in Identified Neurons of the Food-Aversion Network in the Mollusk Helix lucorum, Neurobiol. Learn. Mem., 2010, vol. 94, pp. 158–166.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shvetsov.

Additional information

Original Russian Text © A.V. Shvetsov, T.G. Zachepilo, A.I. Vaido, N.G. Kamyshev, N.G. Lopatina, 2013, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2013, Vol. 49, No. 2, pp. 97–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvetsov, A.V., Zachepilo, T.G., Vaido, A.I. et al. On epigenetic regulation of the process of formation of long-term memory. J Evol Biochem Phys 49, 129–137 (2013). https://doi.org/10.1134/S0022093013020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013020011

Key words

Navigation